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1. INTRODUCTION 
The production of the Chesapeake Bay Program’s (CBP) 1-meter resolution “land cover” data involved 
the identification and classification of image objects derived from the USDA’s National Agriculture 
Imagery Program (NAIP) aerial imagery coupled with above-ground height information derived from 
LiDAR and local planimetric data, if available, on roads, structures, and impervious surfaces (Appendix 
A).  Land cover represents the surface characteristics of the land with classes such as impervious 
cover, tree canopy, herbaceous, and barren. In contrast, “land use” represents how humans use the 
land with classes such as turf grass, cropland, and timber harvest. Land use data are critical for 
understanding the impact of human activities on the Chesapeake Bay because, for example, 
herbaceous vegetation can represent the highest polluting land use (e.g., corn production) or one of the 
lowest (e.g., natural succession). Producing land use from land cover data requires a variety of ancillary 
datasets combined with spatial rules that leverage the contextual information inherent in the very-high 
resolution land cover data.  The CBP’s land use/land cover (LULC) data are so named because they 
represent a combination of cover and use classes (e.g., extractive-barren, solar-herbaceous) to ensure 
the data have the broadest applicability to CBP Partner decisions. 
 
The 1-meter resolution LULC data are foundational, authoritative, and transformative to the Bay 
restoration effort. They are foundational because they inform most outcomes in the 2014 Chesapeake 
Bay Watershed Agreement and will serve as the basis for developing the next generation of watershed 
and land change models. They are authoritative due to their anticipated high accuracy (i.e., 95% user’s 
accuracy for impervious cover and tree canopy) and transparency: any person viewing the data can 
recognize and evaluate features and areas of interest based on their local knowledge. These data are 
transformative because they will ultimately change the way restoration and conservation actions are 
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implemented, enabling a complete inventory of restoration and conservation opportunities, and 
targeting actions at a fine scale to locations where they will be most effective. Moreover, establishing 
accurate trends in impervious cover, forests, and tree canopy will enable the CBP Partners to improve 
the efficiency and effectiveness of stormwater controls, forest management, and climate resilience 
activities.  
 
This document presents the LULC class definitions and methods used to create the 2013/14 and 
2017/18 LULC data and change from 2013/14 to 2017/184.  The 2017/18 LULC was mapped first 
followed by the 2013/14 LULC derived from mapped changes in land cover from 2013/14 to 2017/18.  
By employing this method, the accuracies of the 2017/18 LULC are transferrable to the 2013/14 LULC 
data because ~95% of the landscape did not change over the 4 to 5-year period. This document is 
divided into five sections by major land use category: Development, Production, Natural (forest-related), 
Water, and Wetlands. The abbreviations associated with each land use type are official and used 
throughout the documentation and data tables. The numeration associated with each land use class 
represents the raster values for the 2013/14 and 2017/18 LULC datasets. Rather than combine the 2-
digit LULC codes to represent change, the raster values for the 2013/14 to 2017/18 LULC change data 
are unique two-digit codes to minimize the bit-size of the data. Each section of this document begins 
with definitions for the subset of eighteen general classes in the major land use category followed by a 
list of the subset of fifty-four detailed classes in the category and a discussion of the technical methods 
employed to derive and map each of detailed class in 2017/18 and 2013/14.  For classes where the 
LULC classes are equivalent to the land cover classes, the methods for mapping 2017/18 conditions 
are the same as those for mapping 2013/14 conditions.  For the remaining classes, the methodologies 
for mapping 2017/18 and 2013/14 conditions were different and are described separately.  Different 
methodologies were required due to the lack of comparable image segment information for 2013/14.  
Please note that the 2013/14 land cover and LULC data are not comparable to the CBP’s original 
2013/14 LULC dataset.  The new 2013/14 data are more accurate and directly comparable with the 
new 2017/18 data compared to the original 2013/14 data produced in 2018.    
 

2. DATA PRODUCTS AND CITATIONS 
The data associated with this project cover all 206 counties that intersect or are adjacent to the 
Chesapeake Bay watershed, roughly 99,000 square miles (~256,000 square kilometers) in area (Figure 
1).  The data are publicly viewable and available for download through two websites accessible here: 
 
Static LULC Website: 

Purpose: view the complete 2013/14 and 2017/18 LC and LULC data 
Downloadable data: 

▪ GIS data viewable and downloadable: 1-meter 2013/14 and 2017/18 LC and 
LULC rasters, available by county, attributed with 54 detailed classes and 18 
general classes.  10-meter resolution rasters representing 2017/18 impervious 
surfaces and tree canopy will also be available for download in July 2022. 

▪ Tabular data: Area (acres) summaries by county and watershed for all detailed 
and general classes.  

  

 
4 The staggered dates for the LULC data result from the differences in the years that aerial imagery from the U.S. Department of Agriculture’s 

National Agriculture Imagery Program was acquired for each major Bay jurisdiction: Delaware, 2013 and 2017; District of Columbia, 2013 and 
2017; Maryland, 2013 and 2018; New York, 2013 and 2017; Pennsylvania, 2013 and 2017; Virginia, 2014 and 2018; and West Virginia, 2014 
and 2018. 

https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/lulc-data-project-2022/
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Figure 1. Mapping Area- shaded (206 counties, 99,000 square miles) 
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Citations: 
▪ Chesapeake Bay Program Office (CBPO), 2022. One-meter Resolution Land 

Cover Dataset for the Chesapeake Bay Watershed, 2013/14. Developed by the 
University of Vermont Spatial Analysis Lab, Chesapeake Conservancy, and U.S. 
Geological Survey. [date of access], [URL] 

 
▪ Chesapeake Bay Program Office (CBPO), 2022. One-meter Resolution Land 

Cover Dataset for the Chesapeake Bay Watershed, 2017/18. Developed by the 
University of Vermont Spatial Analysis Lab, Chesapeake Conservancy, and U.S. 
Geological Survey. [date of access], [URL] 

 
▪ Chesapeake Bay Program Office (CBPO), 2022. One-meter Resolution Land 

Use/Land Cover Dataset for the Chesapeake Bay Watershed, 2013/14. 
Developed by the U.S. Geological Survey, Chesapeake Conservancy, and 
University of Vermont Spatial Analysis Lab. [date of access], [URL] 

 
▪ Chesapeake Bay Program Office (CBPO), 2022. One-meter Resolution Land 

Use/Land Cover Dataset for the Chesapeake Bay Watershed, 2017/18. 
Developed by the Chesapeake Conservancy, U.S. Geological Survey, and 
University of Vermont Spatial Analysis Lab. [date of access], [URL] 

 
Dynamic LULC Change Website: 

Purpose: view the LC change and LULC change from 2013/14 to 2017/18 in a three-panel 
display showing the source imagery for 2013/14 and 2017/18 for reference.   
Downloadable data: 

• GIS data viewable and downloadable: 1-meter 2013/14 to 2017/18 LC and LULC 
change rasters, available by county, and attributed with 54 detailed classes and 18 
general classes.   

• Tabular data: LULC change matrices by county, state, watershed, and region for the 
detailed and general classification schemes.  

Citations: 

• Chesapeake Bay Program Office (CBPO), 2022. One-meter Resolution Land Cover 
Change Dataset for the Chesapeake Bay Watershed, 2013/14 – 2017/18. Developed 
by the University of Vermont Spatial Analysis Lab, Chesapeake Conservancy, and 
U.S. Geological Survey. [date of access], [URL] 
 

• Chesapeake Bay Program Office (CBPO), 2022. One-meter Resolution Land 
Use/Land Cover Change Dataset for the Chesapeake Bay Watershed, 2013/14 - 
2017/18. Developed by the University of Vermont Spatial Analysis Lab, Chesapeake 
Conservancy, and U.S. Geological Survey. [date of access], [URL] 

 
 
All GIS data are formatted as TIFFs and projected in USA Contiguous Albers Equal Area Conic USGS, 
meters, NAD 1983 (WKID# 102039).  When displaying unique raster values for the static LULC, a color 
scheme and legend corresponding to the 18 general classes will be automatically applied. When 
displaying unique raster values for the dynamic LULC, a color scheme and legend corresponding to the 
18 general classes representing 2017/18 conditions will be automatically applied.   
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3. Land Use/Land Cover Modeling Process 
A five-step, rule-based process model was developed to translate land cover into a LULC dataset 
(Figure 2). The first step in the process, called “Data Preparation”, involved developing the basic unit of 
analysis for the modeling process. Image segments, a by-product of the object-oriented land cover 
classification process were unioned with land parcels for this purpose. Parcels are important because 
their size and landscape context are highly indicative of land use. For example, small adjacent parcels 
are typically found in residential areas or commercial districts whereas large parcels are more likely to 
represent industrial or agricultural activities. Image segments are important because they represent 
variability in landscape conditions within parcels.  A field in a single farm parcel may be composed of 
many different image segments representing variability in soil moisture, vegetation, or other surficial 
factors. Combined, parcels and image segments, labeled “psegs”, provided the blocks on which to build 
a regionally consistent land use classification (Figure 3).  
 
The second step in the process known as the “General Land Use Model”, was designed to classify 
herbaceous, barren, and scrub-shrub psegs. These cover types are the most variable in terms of land 
use because they could represent crop fields, pasture, orchards, turf grass, natural succession, 
suspended succession, abandoned mine lands, or timber harvest.  Ancillary data are critical for 
differentiating these potential uses and are integrated into the workflow using a series of rules.  The 
third process step concerns the classification of tree canopy as forest, tree canopy over turf grass, or 
other tree canopy. These determinations were made largely based on context. Tree canopy with a 
compacted or managed understory was assumed to exist adjacent to lawns and buildings.  Other tree 
canopy includes windbreaks and small patches of trees that do not meet the size and girth 
requirements of forest. Forests are contiguous patches of tree canopy at least one acre in size and 72-
meters in diameter in at least one portion of the patch.   
 
Separate workflows had to be developed for water and wetlands given the complexity of the detailed 
water and wetlands classes and potential confusion between the two.  Most headwater ponds, for 
example, are classified as wetlands in the National Wetlands Inventory but all headwater ponds are 
classed as either riverine or terrene ponds for the purposes of this dataset. While the classification of 
ponds may appear simple and obvious, a confined small body of water surrounded by land, classifying 
them was challenging because moving upstream, rivers and streams visible in the land cover gradually 
become intermittently hidden beneath closures in tree canopy and appear as linear sequences of 
“ponds”. The final step to produce the 2017/18 LULC dataset involved a hierarchical “burning in” of 
water and wetland, solar, extractive, and harvested forest classes to selectively overwrite previous 
classifications.  For example, a patch of tree canopy classed as forest in the third step might be 
reclassed as forested wetland in the burn in step.       
 
What appears to be a sixth step in the modeling overview diagram, “LULC Change”, is a separate 
model that was developed to interpret the 2013/14 land uses based on the land cover change, the 
2017/18 LULC, and additional ancillary data.  The LULC Change model itself implements four separate 
sets of methods depending on the type of change interpreted: direct, new structure, context, and 
indirect.  Direct methods are applied to classes where the land cover change class is equivalent to the 
land use change class, e.g., impervious other transitioning to impervious structures.  New structure 
rules are particularly important for reclassifying 2017/18 turf grass and trees over turf in newly 
developed parcels into what they were prior to development. The context rules help determine the 
2013/14 conditions based on the predominant use at the parcel scale.  For example, the low vegetation 
in a change from low vegetation to tree canopy could be interpreted as cropland, pasture, turf grass, 
depending on whether it occurs within an agricultural or residential parcel.    the pre-development 
conditions of developed parcels.  The indirect rules are similar to context except that they focus on 
adjacency to determine the likely use of changed pseg.   
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Figure 2.  Land Use/Land Cover Modeling Overview 
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Figure 3.  Parcel-Image Segments (“psegs”). 
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4. CLASSIFICATION AND METHODS 
 
4a.  DEVELOPMENT 
 
General Classification 
Impervious Roads (ROAD) = Paved, and some unpaved, roads and bridges. Dirt and gravel roads 
may be mistakenly mapped as impervious depending on the spectral characteristics of the substrate 
(Minimum Mapping Unit (MMU) = 9 square meters). 
 
Impervious, Structures (IMPS) = Human-constructed objects made of impervious materials that are 
greater than approximately 2 meters in height. Houses, malls, and electrical towers are examples of 
structures (MMU = 9 square meters). 
 
Impervious, Other (IMPO) = Human-constructed surfaces through which water cannot penetrate, and 
that are below approximately 2 meters in height, e.g., sidewalks, parking lots, runways, field-mounted 
solar panels, rail lines, and some private roads.  Barren, low vegetation, scrub-shrub, and emergent 
wetland cover types within 3 meters of rail lines were reclassed to impervious surfaces and included in 
this class (MMU = 9 square meters). 
 
Tree Canopy over Impervious Surfaces (TCIS) = Tree cover that overlaps with roads, structures, or 
other impervious surfaces rendering them partially or completely invisible from above (MMU = 9 square 
meters). 
 
Tree Canopy over Turf Grass (TCTG) = Tree cover within 30-ft of structures or adjacent turf grass 
and other impervious in rural wooded areas and within 60-ft of structures or adjacent turf grass and 
other impervious in developed areas. Developed areas include U.S. Census Bureau defined urban 
areas and clusters. Rural areas include all lands outside Census urban areas and clusters. The 
understory in all TCTG areas is assumed to be turf grass or otherwise altered through compaction, 
removal of surface organic material, and/or fertilization. 
 
Turf Grass (TURF) = Low vegetation associated with residential, commercial, industrial, and recreational 
areas that is assumed to be altered through compaction, removal of organic material, and/or fertilization. 

These include low vegetation lands within small, developed parcels (≤ 5 acres with ≥ 55 m
2 of 

impervious cover), recreational fields, and other turf-dominated land uses (e.g., cemeteries, shopping 
centers, golf courses, airports, hospitals, amusement parks, etc.). 
 
Pervious Developed, Other (PDEV) = Barren lands in developed parcels and barren or low vegetation 
lands that may represent the early stages of development, utility rights-of-way, portions of road rights-
of-way, landfills, and the pervious portions of solar fields adjacent to panel arrays. 
 
Detailed LULC Classification  
Developed 

Impervious 
21 Roads 
22 Structures 
23 Other Impervious 
Tree Canopy (TC) over Impervious  

24 TC over Roads 
25 TC over Structures 
26 TC over Other Impervious 
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Pervious 
27 Tree Canopy over Turf Grass 
28 Turf Grass 
29 Transitional- barren 
Suspended Succession 

51 Barren 
52 Herbaceous 
53 Scrub-shrub 

 
Technical LULC Mapping Methods  

21 Roads 
This class is directly mapped in the land cover data for both 2017/18 and 2013/14.   
 
22 Structures 
This class is directly mapped in the land cover data for both 2017/18 and 2013/14.   
 
23 Other Impervious 
This class is directly mapped in the land cover data for both 2017/18 and 2013/14.   
 
24 Tree Canopy over Roads 
This class is directly mapped in the land cover data for both 2017/18 and 2013/14.   
 
25 Tree Canopy over Structures 
This class is directly mapped in the land cover data for both 2017/18 and 2013/14.   
 
26 Tree Canopy over Other Impervious 
This class is directly mapped in the land cover data for both 2017/18 and 2013/14.   
 
27 Tree Canopy over Turf Grass 

2017/18 Methodology:  
Decision rules were created and applied to three unique and mutually exclusive parcel 
types: agricultural, densely developed, and less densely developed. 

1. Identify parcel types through a hierarchical process 

a. Agriculture parcels contain “Cropland”, “Pasture/Hay”, or “Orchard/Vineyard” land 
uses. 

b. Densely developed parcels contain a structure and are within Census Urban Areas 
and Clusters 

c. Less-densely developed parcels are represented by all remaining parcels with a 
structure 

2. For agricultural parcels: 

a. Buffer “Structures” and “Other Impervious” and “Turf Grass” sharing boundary of 
“Structure” parcel segments by 10 meters. Reclassify “Tree Canopy” that is not 
surrounded by agriculture within the buffer as “Tree Canopy over Turf Grass”. 

3. For densely developed parcels: 

a. Buffer “Structures” and “Other Impervious” and “Turf Grass” sharing boundary of 
“Structure” parcel segments by 20 meters. Classify any “Tree Canopy” within the 
buffer as “Tree Canopy over Turf Grass”. 

4. For less densely developed parcels: 
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a. Buffer “Structures” and “Other Impervious” and “Turf Grass” sharing boundary of 
“Structure” parcel segments by 10 meters. Classify any “Tree Canopy” within the 
buffer as “Tree Canopy over Turf Grass”. 

2013/14 Methodology: 

1. Tree Canopy in a developed parcel in 2013/14 that was Turf Grass in 2017/18 
 

28 Turf Grass 
2017/18 Methodology:  

1. Classify all low vegetation image segments intersecting developed areas as turf grass. 
Developed areas are those designated as: 'AIRCRAFT ROADS', 'AIRPORT', 
'AMUSEMENT PARK', 'CEMETERY', 'GOLF COURSE', 'HOSPITAL', 'PARKING LOT', 
'SEAPORT/HARBOUR', 'SHOPPING CENTRE', 'SPORTS COMPLEX' in the HERE 
LandUseA and LandUseB data layers. 

2. Classify all low vegetation within small, developed parcels (<= 5 acre and contains >= 

55m
2 of impervious surface) as turf grass. 

2013/14 Methodology: 

1. Low Vegetation in a developed parcel (>= 55 sq. meters of structure) that is not 
agriculture, wetlands, or a solar field 

 
29 Transitional- barren 
Areas void of vegetation consisting of natural earthen material in developed landscapes (MMU = 
25m2). 

2017/18 Methodology:  

1. All other land use methods that analyze barren lands are applied first. This includes: 
“Suspended Succession”, “Natural Succession”, all “Agriculture” classes, “Timber 
Harvest”, “Solar Fields”, “Extractive”, all “Wetland” classes, and “Bare Shore”. 

2. Remaining barren land within developed parcels and barren image segments are 
classed as “Transitional- barren”. 

2013/14 Methodology: 

1. Barren land that transitioned to Structure, Other Impervious or Roads in 2017/18 and 
was not detected as agriculture or wetlands in 2013/14. 

2. Barren land that transitioned to Tree Canopy over Turf Grass in 2017/18. 
 
51-53 Suspended Succession 
Barren, low vegetation, and scrub-shrub lands where the regrowth of woody vegetation is actively 
suppressed such as road and utility rights-of-way and landfills. These lands are assumed to be 
unfertilized. 

2017/18 Methodology:  

1. Classify barren, low vegetation, and scrub-shrub image segments as suspended 
succession if they: 

a. Intersect landfills; or 

b. Intersect impervious roads and the image segments are <= 50m2; or 

c. Intersect buffered transmission lines (25m buffer) and are <= 1000m2. 
2013/14 Methodology: 

1. Barren land transitioning to water or solar pervious that was not agriculture or wetlands 
in 2013/14 and is not a shoreline 

2. Low Vegetation transitioning to Barren, development or Solar Field that was not 
agriculture or wetlands in 2013/14 
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Development Ancillary Datasets5: 
Tax parcels, landfills, active and abandoned mines, urban areas, transmission lines, roads, rail 
lines, national land use/cover, national cropland cover, and wetlands. 

 
 
4b.  PRODUCTION 
 
Notes: All non-agricultural land uses for barren and low vegetation land cover types except for natural 
succession (e.g., turf grass, suspended succession, solar pervious, extractive, etc.) take precedent 
over classification as cropland, pasture, or orchards. The three agricultural classes are identified based 
on ancillary data. The 2017, 2018, and 2019 NASS Cropland Data Layers (CDL) were used to identify 
cropland, pasture/hay, and orchards. Because the CDL under-classifies pasture/hay, the 2016 USGS 
National Land Cover Database (NLCD 2019 edition) was used to further identify pasture/hay.  While 
solar fields are included in the production class, in the general classification they are rolled up to 
impervious (other) and pervious developed (other). 
 
General Classification 
Cropland (CROP) = Barren and low vegetation lands on large parcels (> 5 acres) that are mapped as 
cropland in the 2018 Cropland Data Layer 
 
Pasture/Hay (PAST) = Barren, low vegetation, and scrub shrub lands on large parcels (> 5 acres) that 
are mapped as pasture in the 2019 National Land Cover Dataset or the 2018 Cropland Data Layer 
 
Extractive (EXTR) = Barren lands and impervious surfaces within quarries, surface mines, and other 
surficial excavation sites. 
 
Detailed LULC Classification  
Production 

Agriculture 
Cropland 

81 Barren 
82 Herbaceous 

Pasture/Hay 
83 Barren 
84 Herbaceous 
85 Scrub-shrub 

Orchard/vineyard 
86 Barren 
87 Herbaceous 
88 Scrub-shrub 

Animal Operations (TBD)  
Impervious (TBD) 
Barren (TBD) 
Herbaceous (TBD) 

Solar fields 
33 Impervious 
Pervious 

34 Barren 
 

5 A detailed description of these data can be found in the LULC Data Dictionary. 
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35 Herbaceous 
36 Scrub-shrub 

Extractive (surface mines)  
37 Barren 
38 Impervious 

 
Technical LULC Mapping Methods  

General 2017/18 

1. Reclassify the CDL into five classes: 0 Non-agricultural; 1 Cropland; 2 Fallow; 3 
Orchards/vineyards; and 4 Grains/Hay/Pasture. 

a. Summarize the area (hectares) of CDL cropland, orchards, and pasture within all 
barren, low vegetation, and scrub-shrub parcel segments (intersection of tax parcel 
polygons and vector image segments). 

2. Reclassify the NLCD as: 0 Non-pasture/hay; 1 Pasture/hay 

a. Summarize the area (hectares) of NLCD pasture within all barren, low vegetation, 
and scrub- shrub parcel segments. 

General 2013/14 
Each parcel “type” is categorized as cropland, pasture, orchard or other using CDL 2013, NCLD 
2011 and the 2017/18 land use.  

a. If the majority land use in 2017/18 of a parcel is cropland, pasture or orchard, classify 
the parcel type as such 

b. If NLCD and CDL agree a parcel is >= 50% cropland, the parcel type is cropland 

c. If NLCD and CDL agree a parcel is >= 50% pasture, the parcel type is pasture 

d. If CDL detects at least 20% of the parcel is cropland, pasture, or orchard, classify as 
such 

e. Remaining parcels are classified as other (non-agricultural) 
 
81-82 Cropland 
Note: cropland is second agricultural class mapped 

2017/18 Methodology: 

1. All barren and low vegetation parcel segments with >= 1 hectare of CDL cropland 

2. All barren and low vegetation parcel segments adjacent to those classed as cropland in 
step 1 and not adjacent to non-agricultural land use parcel segments with barren or low 
vegetation land cover. 

3. All barren and low vegetation segments adjacent to those classed as cropland in step 2 
and not adjacent to non-agricultural land use parcel segments with barren or low 
vegetation land cover. 

2013/14 Methodology: 

1. Neighboring parcels that are newly developed in 2017/18 whose majority type is 
cropland 

2. Barren and Low Vegetation in a parcel whose parcel type is cropland 
 
83-85 Pasture/Hay 
Note: pasture is the first agricultural class mapped 

2017/18 Methodology: 

1. All barren, low vegetation, and scrub-shrub parcel segments with >= 1 hectare of CDL 
pasture 

2. All barren, low vegetation, and scrub-shrub parcel segments with >= 1 hectare of, and >= 
20% of their area containing, NLCD pasture 



13 
 

3. All barren, low vegetation, and scrub-shrub segments adjacent to those classed as 
pasture in steps 1 or 2 and not adjacent to non-agricultural land use parcel segments 
with barren, low vegetation, or scrub- shrub land cover. 

4. All barren, low vegetation, and scrub-shrub segments adjacent to those classed as 
pasture in step 3 and not adjacent to non-agricultural land use parcel segments with 
barren, low vegetation, or scrub-shrub land cover. 

2013/14 Methodology: 

1. Neighboring parcels that are newly developed in 2017/18 whose majority type is pasture 

2. Barren, Low Vegetation and Scrub/Shrub in a parcel whose parcel type is pasture 
 

86-88 Orchard/vineyard 
Note: orchards/vineyards are the third agricultural class mapped 

2017/18 Methodology: 

1. All barren, low vegetation, and scrub-shrub parcel segments with >= 1 hectare of, and >= 
20% of their area containing, CDL orchard. 

2. All barren, low vegetation, and scrub-shrub segments adjacent to those classed as 
orchard in step 1 and not adjacent to non-agricultural land use parcel segments with 
barren, low vegetation, or scrub-shrub land cover. 

3. All barren, low vegetation, and scrub-shrub segments adjacent to those classed as 
pasture in step 2 and not adjacent to non-agricultural land use parcel segments with 
barren, low vegetation, or scrub-shrub land cover. 

2013/14 Methodology: 

1. Neighboring parcels that are newly developed in 2017/18 whose majority type is orchard 

2. Barren, Low Vegetation and Scrub/Shrub in a parcel whose parcel type is orchard 
 
33-36 Solar fields 
Initiated after agriculture and extractive. 

2017/18 Methodology: 

1. All other impervious, structures, barren, low vegetation, and scrub-shrub parcel segments 
with centroids intersecting the manually-digitized, or AI-derived, solar field boundaries. 

2013/14 Methodology: 

1. Barren, low vegetation, and scrub-shrub in a parcel containing Solar Impervious in 2013/14 
(solar impervious in 2017/18 that did not change) 

 
37-38 Extractive 
Note: initiated after high-confidence agriculture and suspended succession 

2017/18 Methodology: 

1. All other impervious and barren parcel segments intersecting ancillary active and abandoned 
mine polygons. 

2013/14 Methodology: 

1. Barren and Other Impervious that transitioned between each other and was classified as 
Extractive in 2017/18 

 
Production Ancillary Datasets: 

National cropland cover, national land use/cover data, AI-derived solar fields, active and 
abandoned mines, tax parcels, and wetlands.   
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4c.  NATURAL (forest-related) 
 
Notes: These classes are mapped after accounting for Tree Canopy over Turf Grass and Tree Canopy 
over Impervious Surfaces. 
 
General Classification 
Forest (FORE) = All contiguous patches of trees ≥1 acre in extent with a patch width ≥240-ft 
somewhere in the patch. The 240-ft girth references potential altered microclimate conditions extending 
inwards up to 120-ft from the patch edge. The forest understory is assumed to be 
undisturbed/unmanaged. Forests that are also wetlands are included in this class. 
 
Tree Canopy, Other (TCOT) = All trees that do not qualify as “Forest” but are presumed to have an 
undisturbed/unmanaged understory. Such areas include narrow windbreaks adjacent to cropland and 
roads and tree canopy patches not qualified as “forest” that are fully surrounded by agriculture.  
Wetlands with “other tree canopy” are included in this class.  
 
Harvested Forest (HARF) = Barren and low vegetation resulting from recently cleared forests and 
other tree canopy in association with a timber harvest permit (DE, MD, PA, VA, WV) or having a land 
use history of forest rotation since the mid 1980’s. Timber harvest permit data were not reported to the 
Chesapeake Bay Program by either New York or the District of Columbia. 
 
Natural Succession (NATS) = Barren, herbaceous, or scrub-shrub lands that are not classed as 
cropland, pasture, turf grass, or pervious developed. These are areas that are presumed to be 
undergoing either natural or managed succession and will eventually become forested although this 
process may take years to decades to complete. Abandoned mine lands are included in this class. 
 
Detailed LULC Classification  
Natural (forest-related) 

41 Forest (>= 1 acre, 240-ft width) 
42 Other Tree Canopy 
Harvested Forest (<= 3 years) 

31 Barren 
32 Herbaceous 

Natural Succession (> 3 years) 
54 Barren 
55 Herbaceous 
56 Scrub-shrub 

 
Technical LULC Methods  

41 Forest 
2017/18 Methodology: 

1. Dissolve together all “Tree Canopy” parcel segments that share < 85% of their border 
with cropland, pasture, or orchard/vineyard. Those with >= 85% agricultural border are 
assumed to be windbreaks and not dissolved. 

2. Calculate the area and girth (width of widest portion) of each tree canopy patch. 

3. Identify patches with ≥1 acre of tree canopy and girth ≥ 240-ft (72 meters). 
2013/14 Methodology: 

1. Vectorize and dissolve all 2013/2014 Tree Canopy, excluding Tree Canopy over 
Impervious 

2. If the patch is at least an acre in area and has a width of at least 72 meters, it is forest 
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3. Remove areas that are Tree Canopy over Turf Grass 
 
42 Other Tree Canopy 

2017/18 Methodology: 

1. Identify all patches of tree canopy that do not qualify as “forest” nor are classed as “tree 
canopy over turf grass” or “tree canopy over impervious surfaces”.  For patches of tree 
canopy surrounded by agriculture, this class takes priority over “tree canopy over turf 
grass”.  

2013/14 Methodology: 

1. All tree canopy that does not meet the forest metrics 

 
31-32 Harvested Forest 

2017/18 Methodology: 

1. Barren and low vegetation parcel segments that either: 

a. Intersect state timber harvest data. States that provided timber harvest polygons 
include Delaware, Maryland, Pennsylvania and West Virginia. The state of Virginia 
provided point data which was buffered by 60 meters; or 

b. Contain >=20% of LCMAP-detected forest rotation or deforestation by area and 
>=15% of the 20%+ portion must be LCMAP-detected forest rotation. 

2013/14 Methodology: 

1. Barren and low vegetation that is Natural Succession in 2017/18 due to being harvested 
 
54-56 Natural Succession 
Note: “Turf Grass”, “Agriculture”, and “Suspended Succession” methods applied first. 

2017/18 Methodology: 

1. Barren, low vegetation, and scrub-shrub segments with the majority area classified as 
natural succession based on local land use or zoning. 

2. Additional low vegetation and scrub-shrub segments are classed to natural succession if 

3. the parcel contains: 

a. a large percentage (~70% parcel coverage) of tree canopy and the segment area < 
1000 m2; or 

b. < 15% CDL coverage of any kind and < 93m2 of road or building (opposite of 
"occupied parcel"); or 

c. the parcel has >70% tree cover, < 30% CDL of any kind, segment area < 150m2, and 
parcel is > 4046m2; 

4. Barren, low vegetation, or scrub shrub adjacent to large tree canopy segments (>= 
10,000 m2) in large parcels (> 4046 m2). 

5. Scrub Shrub that met one of the Harvested Forest rulesets 
2013/14 Methodology: 

1. Barren, low vegetation, and scrub-shrub that was not agriculture, wetlands, solar fields, 
harvested forest or extractive 

 
Natural Ancillary Datasets: 

Annual land use change, timber harvest points and polygons, wetlands.  
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4d.  WATER 
 
Notes: Non-tidal surface waters evident in the land cover data are highly fragmented due to the large 
amount tree canopy and canopy-related shadows obscuring water in the 1-meter NAIP imagery. Water 
associated with large rivers such as the mainstems of the Susquehanna, Potomac, and James is 
clearly visible in aerial imagery. As streams narrow, progressing upstream towards the headwaters, 
they become increasingly obscured by tree canopy until they are all but invisible under the canopy. 
Even in open fields, narrow streams may not be clearly identifiable in the imagery. Without a very-high 
resolution stream dataset that aligns with the aerial imagery, it is not consistently possible to distinguish 
sections of daylighted stream from ponds. To partially address this issue, 1:24,000 scale National 
Hydrography Data channel initiation points and the USGS’ Floodplain and Channel Evaluation Toolkit 
(FACET) (Hopkins et al., 2020) software were used to generate a stream network aligned with a 3-
meter resolution Digital Elevation Model derived from LiDAR imagery. 
 
General Classification 
Water (WATR) = the Chesapeake Bay, lakes and reservoirs, riverine and terrene ponds, large rivers, 
and water within smaller channels visible through the tree canopy. Included with this class are NWI or 

state wetlands that are mapped as water in the land cover (MMU = 25m2) 
 
Detailed LULC Classification  
Water 

11 Estuarine/ Marine 
Lentic (fresh) 

12 Lakes and reservoirs  
13 Riverine ponds 
14 Terrene ponds 

Lotic (fresh) 
15 Channels 

Open Channel (TBD) 
Tree Canopy over Channel (TBD)  
Culverted (TBD) 

Ditches (TBD) 
Open Ditch (TBD) 
Tree Canopy over Ditch (TBD)  
Culverted (TBD) 

 
Technical LULC Methods 
 
General 2017/18 

1. Water Features 

a. Extract water from land cover 

b. Group water cells into regions based on adjacency (eight neighbor rule) 

c. Vectorize and region grouped water patches using orthogonal and diagonal connectivity 

d. For each polygon calculate the following: 

i. Perimeter-area ratio (PAR) (A measure of shape complexity: large values are less 
complex and smaller values are more complex) 

ii. Polsby-popper score (PPS) (A measure of shape compactness. 1 = 
circular/compact; and 0 = not compact and irregular. 

2. Tidal overlay 
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a. Merge National Wetlands Inventory (NWI) tidal wetlands with NOAA’s Sea-Level Rise 1-ft 
data. 

i. NWI tidal wetlands are created by filtering Estuarine and Marine Wetland and 
Estuarine and Marine Deepwater wetland types and then dissolving any adjacent 
(touching) Freshwater Emergent Wetlands 

ii. Both data sets are rasterized, merged and then vectorized to create the tidal 
overlay. 

3. Lakes and Reservoirs Overlay 

a. Identify any large lakes and reservoirs in the Geographic Names Information System 
(GNIS) with official name designation using the FEATURE_CLASS attribute filtered by 
“Lake and Reservoirs” 

b. Identify Reservoirs and Lakes/Ponds in the NHD-HR Waterbody layer (FTYPE = 436 or 

390) 

c. Merge GNIS and NHD-HR lakes and reservoirs.  

d. Identify NHD Area (query: FTYPE is 460 (Stream/River)) and intersect it with NWI layer 

(query WETLAND_TY is ‘Lake’). 

e. Merge all layers to create Lake and Reservoir Overlay mask 

4. Non-tidal water overlays: 

a. Following overlays are applied to remaining water features once Tidal and Lake and 
Reservoirs overlays have been applied 

b. Elongation ratio is calculated on any remaining features that are not classified as 

Estuarine or Lakes and Reservoirs. 

c. Initial Lotic Overlay (only used to classify water features): 

i. Create a buffered stream network more closely aligned to the 1-meter resolution 

imagery using the National Hydrography Dataset - High Resolution (NHD-HR) 

channel initiation points and the USGS’ FACET software were used to generate 

a stream network aligned with a 3-meter resolution Digital Elevation Model 

derived from available LiDAR imagery.   

ii. Buffer the aligned stream network by the average channel width attribute 

generated by FACET 

iii. In areas of the Bay watershed lacking LiDAR, the non-aligned NHD-HR flowlines 

were buffered and merged with the FACET-derived streams. 

iv. Extract following the FCodes 46000, 46003, 46006, 46007 (Stream/River) from 

the NHD Area. 

v. Merge all layers to create an initial lotic overlay 

d. Initial Lentic Overlay (only used to classify water features): 

i. Query NHD Waterbody for following FTYPES 361, 390 and 436 (lakes, ponds, 

reservoirs, playas) 

ii. Query NWI for following WETLAND_TY: Freshwater Pond 

iii. Merge both files to create an initial lentic overlay 

e. Refined lentic and lotic overlays 
i. To eliminate potentially non-lotic features from the lotic overlay, lotic features that 

intersect the lentic overlay are removed from the lotic overlay and classified as 
lentic. 

ii. Lentic features are further refined using shape, area and morphology indices to 
exclude any long segments of dammed rivers that were accidentally classified as 
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lentic. Query is perimeter-to-area ratio >0.01 and elongation > 0.6 and polsby-
popper score < 0.1. Any features that meet these criteria are reclassified as lotic. 

5. Riverine Overlay (for riverine ponds and wetlands classification only) 
a. Create a buffered stream network more closely aligned to the 1-meter resolution imagery 

i. National Hydrography Dataset - High Resolution (NHD-HR) channel initiation 

points and the USGS’ FACET software were used to generate a stream network 

aligned with a 3-meter resolution Digital Elevation Model derived from available 

LiDAR imagery.   

ii. Buffer the aligned stream network by the average channel width attribute 

generated by FACET 

iii. In areas of the Bay watershed lacking LiDAR, the non-aligned NHD-HR flowlines 

were buffered and merged with the FACET-derived streams. 

b. SSURGO soils were split into two layers: frequently flooded soils using (flodfreqdcd == 

‘Frequent’) and hydric soils using (hydclprs >= 1%). 

c. FEMA 100-year floodplain from HAZUS and hydric soils were subset to identify those 

intersecting the aligned, unbuffered stream network.  

d. The subset FEMA 100-year floodplain and hydric soils, frequently flooded soils, and 

buffered stream network were merged into a single feature, rasterized and vectorized to 

create a seamless riverine overlay layer 
 

11 Estuarine/Marine 
2017/18 Methodology: 

1. All water features intersecting the Tidal overlay. 
 
2013/14 Methodology: 

1. Water intersecting Estuary/Marine in 2017/18 
 

12 Lakes and Reservoirs 
2017/18 Methodology: 

1. All water features intersecting the Lakes and Reservoirs overlay 
 

2013/14 Methodology: 

1. Water Intersecting Lakes/Reservoirs in 2017/18 
 
13 Riverine Ponds 

2017/18 Methodology: 

1. All refined lentic features intersecting the Riverine overlay 

 
2013/14 Methodology: 

1. Water intersecting Riverine Ponds in 2017/18 

2. Water not touching any water in 2017/18 footprint and within the riverine wetlands 
footprint that are not touching FACET channel buffers 

 
14 Terrene Ponds 

2017/18 Methodology: 

1. All refined lentic features that do not intersect the Riverine overlay 

 
2013/14 Methodology: 
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1. Water intersecting Terrene Ponds in 2017/18 

2. Water not touching any water in 2017/18 footprint, not in the riverine wetland footprint 
and not intersecting FACET channel buffers 

 
15 Lotic 

2017/18 Methodology: 

1. Refined lotic features are used (see above). 
 

2013/14 Methodology: 

1. Water intersecting Lotic water in 2017/18 

2. Water not touching any water in 2017/18 footprint and intersecting FACET Channel 
buffers 

 
Water Ancillary Datasets: 

DEM-aligned stream network, geographic names, national hydrography data, national wetlands 
data, and national sea-level rise data.    

 
References: 

Hopkins, K.G., Ahmed, L., Metes, M.J., Claggett, P.R., Lamont, S., and Noe, G.B, 2020, 
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds: 
U.S. Geological Survey data release, https://doi.org/10.5066/P9RQJPT1. 

https://doi.org/10.5066/P9RQJPT1
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4e.  WETLANDS AND WATER MARGINS 
 
Notes: “Emergent wetlands” as a land cover class (MMU = 225 square meters) were mapped in 
Delaware, Pennsylvania, and the tidal portions of Maryland and the District of Columbia as low 
vegetation areas located along major waterways (e.g., rivers, estuary, ocean) with visually confirmed 
saturated ground surrounding the vegetation. Emergent wetlands were not mapped as a land cover 
class in New York or West Virginia. For Virginia, “emergent wetlands” as a land cover class were 
mapped as all barren, low vegetation, and scrub-shrub lands that substantially overlap wetland features 
delineated by NOAA’s C-CAP program, are non-adjacent to impervious surfaces, and within 1-ft 
elevation of tidal surface waters. This special approach for mapping emergent wetlands was needed 
because Virginia has large amounts of tidal wetlands, “emergent wetland” land cover was not mapped 
originally from 2014 imagery, and budget and time constraints prohibited implementation of a purely 
spectral-based classification. 
 
General Classification 
Tidal Wetlands, Non-forested (TDLW) = All wetlands mapped as estuarine or marine according to 
National Wetlands Inventory (NWI) plus any adjacent freshwater emergent wetlands, and emergent 
wetlands mapped from high-resolution imagery outside Virginia must be within 1-ft of adjacent tidal 
water elevations derived from NOAA’s Sea Level Rise dataset. 
(https://www.fws.gov/wetlands/Documents/Wetlands-and-Deepwater-Habitats-Classification-chart.pdf) 
 
Riverine Wetlands, Non-forested (RIVW) = National Wetlands Inventory (NWI) non-pond, non-lake 
wetlands, emergent wetlands along streams mapped from high-resolution imagery outside Virginia, 
state designated wetlands, and potential non-tidal wetlands (for Pennsylvania only) located within the 
FEMA designated 100-year floodplain, DEM-aligned 1:24,000 scale buffered stream network, SSURGO 
hydric or frequently flooded soils. 
 
Terrene Wetlands, Non-forested (TERW) = National Wetlands Inventory (NWI) non-pond, non-lake 
wetlands, emergent wetlands mapped from high-resolution imagery outside Virginia, state designated 
wetlands, and state potential non-tidal, non-floodplain wetlands (for Pennsylvania only). These are 
spatially isolated wetlands on ridges and slopes that are most prevalent in the coastal plain where 
streams may originate from wetland complexes. 
 
Detailed Classification 
5000 Wetlands and Water Margins 

Tidal Wetlands 
91 Barren 
92 Herbaceous 
93 Scrub-shrub 
94 Other Tree Canopy  
95 Forest 

Riverine (Non-tidal) 
61 Barren 
62 Herbaceous 
63 Scrub-shrub 
64 Other Tree Canopy  
65 Forest 

Terrene/Isolated (Non-tidal) 
71 Barren 
72 Herbaceous 

http://www.fws.gov/wetlands/Documents/Wetlands-and-Deepwater-Habitats-Classification-chart.pdf)


21 
 

73 Scrub-shrub 
74 Other Tree Canopy  
75 Forest 

16 Bare Shore 
 
Technical LULC Methods: 
 
General 2017/18 

1. Build a comprehensive wetland layer 

a. Exclude “Freshwater Pond” and “Lake” from NWI wetland types and add attributes to 
eliminate NHD stream features which are incorporated into the latest version of NWI. 
Add attributes:  

i. Area 

ii. Length. 

iii. Perimeter-area ratio (PAR) (Informs shape complexity. Large values are less 
complex and smaller values are more complex) 

iv. Polsby-popper score (PPS) (informs shape compactness. 1 is circular/compact 
and 0 is not compact and irregular) 

b. Delete NWI features with PPS <= 0.1 for wetland classes that have linear features: 

i. Freshwater Emergent Wetland 

ii. Freshwater Forested/Shrub Wetland 

iii. Riverine 

c. Isolate, vectorize, and merge “Emergent Wetlands” in the land cover data with the NWI 
wetlands subset and any local or state wetland data to create a comprehensive wetland 
layer. 

 
91-95 Tidal Wetlands 
 

2017/18 Methodology: 

1. All features from the comprehensive wetland layer intersecting the Tidal Overlay (see 
Water methods). 

 
2013/14 Methodology: 

1. Barren, Low Vegetation, Scrub-Shrub and Tree Canopy within tidal wetlands overlay 
 
61-65 Riverine Wetlands (Non-Tidal) 

2017/18 Methodology: 

1. All features from the comprehensive wetland layer intersecting the Riverine Overlay (see 
Water methods). 

 
2013/14 Methodology: 

1. Barren, Low Vegetation, Scrub-Shrub and Tree Canopy within riverine wetlands overlay 
 
71-75 Terrene Wetlands (Non-Tidal) 

2017/18 Methodology: 

1. All remaining features from the comprehensive wetland layer after classifying tidal and 
riverine wetlands. 

 
2013/14 Methodology: 
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1. Barren, Low Vegetation, Scrub-Shrub and Tree Canopy within terrene wetlands overlay 
 
 
16 Bare Shore 

2017/18 Methodology: 

1. Barren lands that are adjacent to water features but not classified as wetlands. 
 

2013/14 Methodology: 

1. Barren transitioning to Water that is adjacent to Water in 2013/14 
 
Wetland Ancillary Datasets: 

DEM-aligned stream network, 100-year floodplain, national soils data, geographic names, 
national hydrography data, national wetlands data, national sea-level rise data, and potential 
conservable (forested) wetlands in Pennsylvania.   
 

  



23 
 

Appendix A.  Land-cover Change Mapping in the Chesapeake Bay Watershed 
 
Prepared by: MacFaden, S., J. O’Neil-Dunne, E. Buford, K. Schulze, and A. Royar University of 

Vermont Spatial Analysis Laboratory 
 
1.0 Study Area 

The project area encompassed 206 counties\municipalities in the Chesapeake Bay Watershed and 
immediately adjacent areas, including the entirety of Maryland and Delaware and parts of Virginia, 
West Virginia, Pennsylvania, and New York.  On a north-south axis, this region extended from the 
Adirondack Mountains in New York to the coastal plain of southern Virginia; on an east-west axis, it 
stretched from the Delmarva Peninsula (Delaware, Maryland, and Virginia) to the Allegheny Mountains 
of West Virginia.  The total study area was 258,050 km2 (99,634 mi2, 25,804,975 ha, 63,765,383 ac). 

2.0 Analysis Period 

The specific analysis of interval of interest in change detection was 2013\2014-2017\2018.  A two-year 
range was necessary for both the beginning and ending dates because the quality of the input datasets 
varied in quality and availability. 

3.0 Data Types 

3.1 2013\2014 Land Cover 

The Project Team and its collaborators previously created 1-m resolution land-cover for the 2013\2014 
period.  The primary classes were:  Water, Emergent Wetland, Tree Canopy, Scrub\Shrub, Low 
Vegetation, Barren, Impervious Buildings, Other Impervious (i.e., parking lots, driveways, sidewalks, 
etc.), and Impervious Roads.  This scheme also included separate classes for tree canopy overhanging 
different types of anthropogenic surfaces: Tree Canopy Over Impervious Buildings, Tree Canopy Over 
Other Impervious, and Tree Canopy Over Impervious Roads.  Because this first high-resolution land-
cover map was developed separately for each state in the watershed, the mapping protocol varied 
slightly across the study area.  In particular, buildings were not mapped as a separate class in Virginia, 
instead being combined with the Other Impervious class.  Also, the Emergent Wetlands class was not 
included in the 2013\2014 land cover for Virginia, West Virginia, and New York, and it was restricted to 
tidal zones in Maryland.  Despite these discrepancies, however, the 2013\2014 land cover served as 
the starting point for change detection, with the expectation that the mapping protocol would be 
standardized across all states in subsequent products and that any known errors or inconsistencies 
would be corrected prior to direct comparison of the two time intervals.   

3.2 Imagery 

The input most essential to change detection was National Agricultural Imagery Program (NAIP) 
imagery acquired by the USDA Farm Services Agency, a multi-temporal, national (continental United 
States) collection that facilitates high-resolution land-cover classification (Maxwell et al. 2017).  NAIP 
imagery is usually acquired during leaf-on conditions at 2-3 year intervals and at a resolution of 0.6-1 
m.  For the Chesapeake Bay study area, all of the pertinent NAIP datasets were 4-band imagery tiles 
containing both the visible bands (Blue, Green, Red) and a Near Infrared (NIR) band.  For the first time 
interval (T1), 2013 imagery was used for Delaware, Maryland, New York, Pennsylvania, and 
Washington, DC and 2014 imagery was used for Virginia and West Virginia.  For the second time 
interval (T2), 2017 data were used for New York, Pennsylvania, and Washington, DC while 2018 data 
were used for Delaware, Virginia, and West Virginia.  For Maryland, some portions of the state were 
covered by 2018 NAIP acquired during leaf-off conditions, limiting the imagery’s utility to change 
detection (i.e., changes to vegetation are not as spectrally distinct as they tend to be during growing 
conditions).  Because NAIP was acquired for Maryland in consecutive years, however, 2017 NAIP was 

https://www.chesapeakebay.net/news/pressrelease/chesapeake_bay_restoration_to_benefit_from_groundbreaking_technology_advanc
https://www.chesapeakebay.net/news/pressrelease/chesapeake_bay_restoration_to_benefit_from_groundbreaking_technology_advanc
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used for this state whenever the 2018 imagery was leaf off.  Portions of the 2018 NAIP for West 
Virginia were also acquired during leaf-off conditions but no other NAIP datasets were close enough 
temporally to permit substitution.  Accordingly, the change detection modeling for West Virginia 
included routines that attempted to accommodate the leaf-off imagery to the fullest extent possible. 

3.3 LiDAR 

After imagery, the most useful data type was LiDAR, which permitted derivation of normalized digital 
surface models (nDSMs) that indicated the height of aboveground features.  Where available, this 
feature-height information facilitated mapping and differentiation of tree canopy and buildings.  It was 
preferable to obtain LiDAR that coincided exactly with the T1 and T2 intervals for each state but in 
reality the acquisition dates of LiDAR across the study area varied widely, necessitating use of datasets 
that were offset from the specific analysis period.  In such cases, LiDAR was used more as an ancillary 
dataset to improve mapping rather than an exclusive input.  No datasets with acquisition dates older 
than 2010 were used in T1 mapping while no datasets younger than 2016 were used at T2.  In some 
cases, no LiDAR was available at T1, T2, or at either interval, necessitating complete reliance on other 
datasets for T1 refinement or change detection. 

3.4 Thematic GIS Datasets 

Thematic GIS datasets in vector format were also used to inform improvements to the original T1 land 
cover and subsequent analysis of change.  These layers included thematic datasets developed by 
individual municipalities, including building footprints, roads, parking lots, sidewalks, and water bodies.  
Regional datasets such as the Microsoft Building Footprints v2.0 (Microsoft 2018) were also useful.  
However, thematic datasets were used with caution because the specific date of individual layers was 
not always evident, potentially complicating the chronology of land-cover change, and they also varied 
widely in quality.  For example, footprint layers sometimes contained errors of omission and 
commission and in the other instances contained configuration errors (i.e., a footprint coincided with an 
actual structure but misrepresented its shape).  Another problem was that some thematic datasets did 
not differentiate impervious surfaces such as buildings, roads, and parking lots, or did not attribute them 
adequately.  Accordingly, all datasets were vetted prior to use and layers with inadequate quality or 
attribution were excluded from subsequent modeling.  Furthermore, some thematic datasets were used 
more as ancillary datasets to improve existing classes rather than sources of precise feature 
delineation. 

3.5 C-CAP Land Cover 

To address the lack of an Emergent Wetlands class in the available 2013\2014 land cover for Virginia, 
the Project Team considered a range of possible mapping approaches.  LiDAR-based topographic 
modeling (MacFaden et al. 2021) was one possibility but it would have required intensive manual 
review and correction prior to use in comprehensive land-cover mapping.  This option was ultimately 
considered beyond the scope of the current project’s timeline.  An alternative approach was to use the 
wetlands component of NOAA’s Coastal Change Analysis Program (C-CAP) land cover as a guide to 
modeling tidally-influenced wetlands.  The most recent C-CAP dataset (NOAA 2016), with 30-m 
resolution, was subsequently used for this approach, facilitating addition of the Emergent Wetlands 
class to portions of 42 counties\municipalities in Virginia’s portion of the Chesapeake Bay Watershed.  
Wetlands mapping for these counties was further constrained by a tidal layer produced by the Project 
Team (See Wetlands and Water Margins section- page 12). 

4.0 Data Preparation 

All input datasets necessary for land-cover mapping and change detection were publicly available from 
data download sites or by direct inquiry to federal, state, and local agencies.  As a general rule, the 
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best-available datasets aligning with the specific analysis period were selected for additional vetting.  
The Project Team then reviewed all datasets for quality, pertinence, and completeness (Appendix A), 
discarding any datasets that would provide little or no information in subsequent modeling or, worse, 
would confound change detection.  If necessary, selected datasets were then re-projected to the 
projection of the LiDAR datasets covering an individual county\municipality, ensuring compatibility 
among all inputs. 

4.1 2013\2014 Land Cover 

The T1 land-cover maps for Pennsylvania and Delaware were obtained in their original modeling 
coordinate reference systems (CRS), which were zoned Transverse Mercator projections.  However, 
the T1 land-cover datasets for the other states were available only in Albers projection, an equal-area 
system suitable for representing large, regional study areas.  Accordingly, the T1 datasets in Albers 
were re-projected to the full set of different projections used in the study area.  To minimize warping 
during re-projection, the T1 datasets in Albers were first re-sampled from 1 m to a finer resolution (0.5 
m).  These steps were conducted in ArcGIS Pro 2.8 (ESRI, Redlands, Colorado, USA). 

4.2 Imagery 

All NAIP data were obtained as uncompressed tiles in their original CRSs and cell sizes, necessitating 
compilation into mosaics that matched the projections and extents of individual counties or groups of 
counties.  Mosaicking and re-projecting operations were conducted in a variety of GIS programs, 
including ArcGIS Pro, FME 2021 (Safe Software, Surrey, British Columbia, Canada), and ERDAS 
Imagine 2018 (Hexagon Geospatial, Madison Alabama, USA). 

4.3 LiDAR  

Whenever possible, LiDAR datasets were obtained in their original point-cloud format, which were then 
filtered into specific derivatives using LAStools (rapidlasso Gmbh) and exported as surface models.  
These models were:  1) digital elevation models (DEMs) were extracted from ground returns; 2) digital 
surface models (DSMs) from first returns; and 3) digital terrain models (DTMs) from last returns.  In 
FME, the DEMs were then subtracted from DSMs and DTMs to normalize them against the ground, 
producing nDSMs and nDTMs, respectively.  Later, during feature extraction in eCognition 10.1 
(Trimble Navigation Limited, Westminster, Colorado, USA), yet another derivative was created by 
subtracting the DTM from the DSM (Difference DSM-DTM).  The nDSMs were most useful for 
identifying aboveground objects while the Difference DSM-DTM layer helped differentiate trees from 
buildings and other structures (i.e., difference values will be consistently near zero for a consistent 
surface such as a building roof).  Although intensity values usually accompanied the LiDAR point 
clouds, they were not used in any subsequent modeling because high variability within and between 
LiDAR collections prevented development of effective modeling rules. 

4.4 Thematic GIS Datasets 

Individual GIS datasets were re-projected in ArcGIS Pro as necessary to match the modeling CRS for 
each county\municipality.  In some cases, hydrology and impervious surfaces layers, if adequately 
attributed, were filtered to separate different classes of interest (e.g., roads vs. parking lots). 

4.5 C-CAP Land Cover 

In ArcGIS Pro, the full 2016 C-CAP land cover layer was clipped by the Virginia boundary and then its 
wetland classes (13-18) within 1-ft elevation above sea level were extracted to derive an emergent 
wetlands dataset.  
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5.0 Mapping Workflow 

5.1 Preliminary Roads Mapping 

Discrimination of road surfaces from other impervious features can be challenging when relying 
primarily on imagery-based spectral criteria.  Accordingly, in this project new or modified roads were 
digitized manually using the T1 and T2 NAIP as reference imagery.  Roads removed between the 
analysis intervals were also mapped onscreen.  Road centerlines were reviewed to help identify areas 
of change but were not used explicitly in mapping because the chronology of the available layers did 
not always match the analysis period.  The digitized layer with new, modified, or removed roads was 
then used in subsequent modeling routines to guide change detection for the Impervious Roads class. 

5.2 Object-based Image Analysis 

Automated feature extraction was performed in eCognition, state-of-the-art software for performing 
object-based image analysis.  This technique focuses on groups of pixels that form meaningful 
landscape objects rather than individual pixels (Benz et al. 2004), which provides a more realistic 
representation of features and also permits contextual analysis (i.e., how does an object relate to its 
neighbors?).  eCognition also permits data fusion, or simultaneous use of multiple spectral, surface-
model, or thematic inputs (O’Neil-Dunne et al. 2012).  The Project Team has used this approach for a 
wide variety of high-resolution mapping applications, including tree canopy (O’Neil-Dunne et al. 2014), 
comprehensive land cover (MacFaden et al. 2012), and wetlands (MacFaden et al. 2021). 

5.3 Modeling Scenarios 

All mapping was performed by county\municipality.  This narrow extent was necessitated by multiple 
factors: 1) the difficulty creating and working with large high-resolution imagery mosaics; 2) the 
patchwork availability of LiDAR in some regions; 3) the occurrence of leaf-off NAIP imagery in some 
regions; and 4) the limited geographic focus of most thematic vector GIS datasets (e.g., county-specific 
impervious surfaces).  In cases where different LiDAR collections covered different portions of an 
individual county, the county was mapped in sections.  Division of counties into sections was also 
necessary for regions covered by a mix of leaf-on and leaf-off NAIP imagery. 

After assessing the availability and quality of the inputs for each county, a specific modeling scenario 
was identified and coded into an eCognition rule set that executed the complete mapping workflow 
(Figure 1).  The optimal scenario occurred when:  1) LiDAR existed for both T1 and T2; 2) leaf-on NAIP 
was available at both time periods; and 3) good thematic vector datasets could help guide mapping of 
specific land-cover elements.  For the 2013\2014-2017\2018 analysis period, this scenario rarely 
occurred (Appendix A), requiring alternative options for LiDAR at only one interval, LiDAR missing at 
both intervals, the presence of leaf-off imagery, or few if any usable thematic datasets.  When sub-
optimal scenarios occurred, data fusion was less comprehensive and the modeling necessarily relied 
more heavily on the available inputs or, later in the workflow, manual review and editing. 
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Figure 1.  Workflow for land-cover change mapping in the Chesapeake Bay Watershed, 2013\2014-
2017\2018.  Designed to accommodate a range of data-input scenarios, the workflow first improved 
existing 2013\2014 maps and then performed change detection using 2017\2018 data.  The output 
change detection map could then be used to produce T1 (revised) or T2 extracts. 

5.4 Change Detection Classes 

To represent change across the analysis period, the original 12-class classification scheme was 
expanded to include all types of change likely to occur in the Chesapeake Bay Watershed (Table 1).  
Change types with a low probability of occurrence or classes that could not be mapped effectively with 
the available data were excluded.  For example, with LiDAR unavailable at T2 for many counties in the 
study area, no attempt was made to model expansion of the Scrub\Shrub class in old fields reverting to 
shrubby growth.  Similarly, the available data did not permit effective mapping of incremental water-
level rises in coastal zones.  However, change types that might be added during manual review and 
editing were included in the classification, including conversion of Low Vegetation to Scrub\Shrub 
(change class 54).  These additional classes were not systematically mapped across the entire study 
area; rather, they were incorporated when observed to ensure logical consistency with adjacent types 
of change or manual edits. 

5.5 Automated Feature Extraction 

A 1-m modeling resolution was used for all automated mapping, with each county divided into 2,000 x 

2,000-pixel tiles to facilitate multi-thread processing.  To maximize previous investments in remote-

sensing data acquisition and landscape characterization, the original 2013\2014 land cover was used 

as starting point for all subsequent analyses.  Accordingly, the mapping workflow initially focused on 
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improving the T1 land cover, where necessary, by using the available data inputs to add features 

omitted from parts of the original layer (e.g., buildings) and to remove erroneous ones (e.g., Tree 

Canopy overestimation along forest\field edges).  This harmonization step was especially important in 

avoiding false change estimates; if a feature existed at both time intervals, it was essential to 

characterize it correctly at T1.  After finalizing the revised T1 map, the LiDAR, imagery, and thematic 

datasets available at T2 were used to perform change detection, assigning altered T1 features to one 

or more of the change classes to explicitly track individual land-cover conversions. 

5.5.1 T1 Land Cover Adjustments 

5.5.1.1 Tree Canopy 

5.5.1.1.1 T1 LiDAR Available 

5.5.1.1.1.1 Missing Objects 

If LiDAR exited at T1, it was used to look for tree-canopy omissions in the original 2013\2014 land 
cover.  Image objects were created from ground-level classes (e.g., Low Vegetation, Other Impervious) 
using a Multi-threshold Segmentation on the T1 nDSM (>0.3 m), identifying aboveground features.  A 
combination of T1 NDVI and T1 Difference DSM-DTM was then used to evaluate the new objects with 
a sequence of varying thresholds (e.g., T1 NDVI >0.3 and T1 Difference DSM-DTM >0.5; T1 NDVI >0.2 
and T1 Difference DSM-DTM >0.95).  These routines specifically attempted to identify street trees and 
small clumps of small trees that may have missed during the original 2013\2014 mapping effort.  The 
high Difference DSM-DTM also ensured that buildings were not inadvertently reclassified as Tree 
Canopy. 
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Table 1.  Classification matrix for land-cover change in the Chesapeake Bay Watershed, 2013\2014-

2017\2018. 

 T2 Classes 

Wa EW TC SS LV B IS OI IR TCIS TCOI TCIR 

T1 Classes 1b 2 3 4 5 6 7 8 9 10 11 12 

W 1   13 14 15 16 17 18 19    

EW 2 21c  23  25 26 27 28 29    

TC 3 31    35 36 37 38 39    

SS 4 41  43  45 46 47 48 49    

LV 5 51  53 54  56 57 58 59    

B 6 61  63  65  67 68 69    

IS 7 71  73  75 76  78 79 210d   

OI 8 81  83  85 86 87  89  211  

IR 9 91  93  95 96 97 98    212 

TCIS 10 101    105 106 107 108 109    

TCOI 11 111    115 116 117 118 119    

TCIR 12 121    125 126 127 128 129    
aW = Water; EW = Emergent Wetlands; TC = Tree Canopy; SS = Scrub\Shrub; LV = Low Vegetation; B 
= Barren; IS = Impervious Structures; OI = Other Impervious; IR = Impervious Roads; TCIS = Tree 
Canopy Over Impervious Structures; TCOI = Tree Canopy Over Other Impervious; TCIR = Tree 
Canopy Over Impervious Roads. 
bNumeric code for each land-cover or change class. 
cItalicized classes were not mapped by modeling; manual editing only. 
dThe 8-bit raster datasets used during mapping accommodated 256 unique value; change classes 710, 
811, and 912 were thus assigned alternative values. 
 
5.5.1.1.1.2 False Objects 

Where available, LiDAR was also used to check for erroneous Tree Canopy objects in the T1 map, 
focusing on overestimated canopy edges, false canopy over water, false canopy over buildings, utility 
poles, and other common sources of confusion.  Image objects were created from the existing Tree 
Canopy class using a Multi-threshold Segmentation based on the T1 nDSM, identifying very short 
features (<0.1 m).  After consolidating and smoothing adjacent features, the new objects were re-
evaluated relative to height (<0.1 m) and short features were reassigned to a temporary placeholder 
class (to be evaluated later for inclusion in other classes). 

5.5.1.1.2 No T1 LiDAR Available 

5.5.1.1.2.2 Missing Objects 

No attempt was made to automate identification of missing trees when LiDAR was unavailable; the 
likelihood of capturing false positives was unacceptably high using spectral criteria only. 

5.5.1.1.2.1 False Objects  

When no LiDAR existed at T1, NAIP imagery was the primary reference for checking the Tree Canopy 
class.  Inevitably, spectral examination of potentially erroneous tree canopy was not as effective as 
LiDAR-based criteria and thus was necessarily more conservative in reassigning features.  After a 
Multi-resolution Segmentation weighted by the four T1 NAIP bands (Scale, 25; Shape, 0.2; 
Compactness, 0.5; T1 Blue, Weight 1; T1 Green, Weight 1; T1 Red, Weight 1, T1 NIR, Weight 2) was 
used to create image objects, the Normalized Difference Vegetation Index (NDVI) calculated from the 
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T1 NAIP (T1 NDVI) served as the primary evaluative criterion, reassigning low T1 NDVI objects (<0.2) 
to a temporary class.  Additional criteria with higher T1 NDVI thresholds were also combined with 
contextual clues (e.g., size, distance to buildings) to identify Tree Canopy likely to be false. 

A second spectral routine examined objects against not only the T1 NAIP but also the T2 NAIP, 
identifying objects with a small (<0.2) relative difference between the two NAIP values and a low (<0.1) 
T1 NDVI.  This type of harmonization procedure, used in many subsequent steps, helped ensure that 
only erroneous features were reassigned during T1 land-cover adjustments and also helped prevent 
identification of false land-cover conversions during change detection. 

For areas with leaf-off T1 NAIP only, the Tree Canopy class was not examined spectrally; T1 
adjustments relied more on later manual QA\QC.  However, leaf-off T2 NAIP would be used later during 
change detection, albeit with much lower NDVI criteria. 

5.5.5.2 Impervious Structures 

5.5.5.2.1 T1 LiDAR Available 

5.5.5.2.1.1 Missing Objects 

The Impervious Structures class was not included in the Virginia portion of the 2013\2014 land cover 
but sporadic omissions also occurred elsewhere.  A LiDAR-based approach similar to the one for Tree 
Canopy was used for buildings with the additional assistance, for most counties, of thematic vector 
datasets depicting building footprints.  On a separate map (to avoid corrupting the initial classification), 
a Multi-threshold Segmentation based on the T1 nDSM (>2.4 m) identified aboveground features and 
then the T1 Difference DSM-DTM (<0.5) and T1 NDVI (<0) helped isolate surfaces likely to be rooftops 
rather than tree canopy.  Additional routines incorporating size and shape (Rectangular Fit, 
Compactness) also helped refine the initial selection.  The draft Impervious Surfaces class was then 
compared to thematic building footprints, where available, identifying features that overlapped 
substantially (>0.6).  Features that strongly conformed to thematic buildings were replaced by those 
footprints, adopting the often-superior shape and configuration of the thematic dataset, while stand-
alone LiDAR features were retained in their original form.  The LiDAR-derived buildings were then 
smoothed with Pixel-based Object Resizing routines to ensure a reasonable geometric appearance.   

5.5.5.2.1.2 False Objects 

To evaluate false buildings at T1, the Impervious Structures class was segmented by the nDSM  (Multi-
threshold Segmentation) to identify very short (<0.2 m) draft features.  These features were reassigned 
to a temporary class for later assignment to an alternative land-cover class. 

5.5.5.2.2 T2 LiDAR Available 

5.5.5.2.2.1 Missing Objects 

If no T1 LiDAR existed but T2 LiDAR was available, the latter was used as a substitute for identifying 
draft Impervious Structures.  As before, however, LiDAR-derived features were evaluated relative to T1 
NAIP, minimizing the possibility that buildings constructed between T1 and T2 would be inadvertently 
incorporated into the revised T1 map. 

5.5.5.2.2.2 False Objects 

The Impervious Structures class was not evaluated for false objects when only T2 LiDAR existed.  
Spectral criteria could not be used because overhanging Tree Canopy could partly or wholly obscure 
some buildings, making NDVI unreliable. 

5.5.5.2.3 No T1 or T2 LiDAR Available 
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5.5.5.2.3.1 Missing Objects 

When no LiDAR existed, either at T1 or T2, no attempt was made to identify missing buildings; without 
height data, the probability of introducing further error was too high. 

5.5.5.2.3.2 False Objects  

For Virginia, building footprints were examined relative to spectral criteria when no LiDAR existed, 
reverting features with high T1 NDVI (>0.2) to a temporary class awaiting further evaluation.  It was 
possible that small buildings wholly obscured by Tree Canopy would be removed during this step but, 
assuming that the building would later be identified as a type of land-cover change, it was considered 
the best possible compromise (i.e., change would receive more scrutiny during subsequent manual 
review). 

5.5.1.3 Impervious Roads 

The manually-produced layer containing new, modified, or removed roads was incorporated directly 
into the draft classification, adding corrections to existing roads and removing roads that did not actually 
exist at T1.  In most instances, the Low Vegetation and Other Impervious classes from the 2013\2014 
land cover were modified during this procedure. 

5.5.1.4 Other Impervious 

5.5.1.4.1 Missing Objects 

Objects created when the Tree Canopy, Impervious Structures, and Impervious Roads classes were 
adjusted in the T1 map, but not yet assigned to other classes, were evaluated with a combination of a 
Multi-resolution Segmentation (Scale, 25; Shape, 0.2; Compactness, 0.5; T1 Red, 1; T1 Green, 1; T1 
Blue, 1; T1 NIR, 2) and spectral criteria.  First, shadows were temporarily set aside using the NIR band 
in the T1 NAIP, which tends to have low values in shaded areas (T1 NIR <75).  After obvious 
impervious surfaces (T1 NDVI <0) were assigned to Other Impervious and obvious low-growing 
vegetated features (T1 NDVI >0.01) were assigned to Low Vegetation, the remaining unshaded objects 
were assigned to Other Impervious when they were mostly (>0.5) surrounded by other impervious 
features.  Contextual criteria were also used to resolve the shaded objects, using a sequence of 
routines combining adjacency, size, building density (as estimated from a density layer created in 
eCognition with Convolution Filter Gauss Blur), and shape (i.e., Length\Width) to assign them to either 
Other Impervious or Low Vegetation.  Another routine resolved shadows using T2 NAIP, relying on the 
observation that imagery datasets collected at different times may capture shadows differently (i.e., 
features shaded in T1 NAIP may not be shaded in T2 NAIP).  When none of these routines reassigned 
individual shadows, a final routine grew adjacent features into the remaining shaded areas using Pixel-
based Object Resizing. 

5.5.1.4.1 False Objects 

Other Impervious objects unchanged by the proceeding routines were evaluated with a similar 
combination of a Multi-resolution Segmentation (Scale, 25; Shape, 0.2; Compactness, 0.5; T1 Red, 1; 
T1 Green, 1; T1 Blue, 1; T1 NIR, 2), spectral criteria, and context, with large (>100 m2), high (T1 NDVI 
>0.1) objects reassigned to Low Vegetation.  To avoid introducing false change during subsequent 
change detection, however, the identified objects were also evaluated relative to T2 NAIP, with low T2 
NDVI (<0) objects reverted to Other Impervious. 

5.5.1.5 Low Vegetation 

5.5.1.5.1 Missing Objects 
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As described above for the Other Impervious class, objects created by the reassignment of other 
classes were evaluated relative to a combination of spectral and contextual criteria.  After obvious 
impervious features were reassigned to Other Impervious, the remaining objects with high T1 NDVI and 
adjacency were assigned to Low Vegetation.  Shadows were similarly assigned to Low Vegetation 
when they were surrounded by vegetated features. 

5.5.5.5.2 False Objects 

The now familiar combination of a Multi-resolution Segmentation based on T1 NAIP and spectral 
criteria was used to reassign Low Vegetation objects to Other Impervious when they had low (<0) T1 
NDVI and were located near high building densities.  As with the Other Impervious routines, however, 
identified objects were also compared to T2 NAIP to ensure that no actual Low Vegetation features 
were inadvertently reassigned.  In this case, features were reverted to Low Vegetation when T2 NDVI 
was high (>0) and the absolute difference between T1 NDVI and T2 NDVI was also high (>0.1). 

5.5.1.6 Water 

5.5.1.6.1 Missing Objects 

After creating objects with the standard Multi-resolution Segmentation, small water features missing 
from the T1 map were reassigned from the Low Vegetation and Other Impervious classes when the 
NIR band in the T1 NAIP was low (<50).  Adjacent objects were added to the missing features when 
they also had low (<75) T1 NIR.  Because most of these features tended to be small agricultural ponds 
or stormwater retention structures, identified features that were adjacent to buildings or tree canopy 
were reverted to their original classes. 

5.5.1.6.2 False Objects 

Small (<500 m2) water features were assigned to Other Impervious when they were entirely surrounded 
by this class or by a combination of this class and Impervious Structures and Impervious Roads. 

5.5.1.7 Barren 

5.5.1.7.1 Missing Objects 

Missing Barren objects were not evaluated during automated T1 adjustments because such features 
were easily confused with impervious surfaces, which often have similar spectral characteristics.  The 
workflow instead relied on later manual corrections to identify and add omissions. 

5.5.1.7.2 False Objects 

Potential areas of false Barren were segmented by a Multi-resolution Segmentation (Scale, 25; Shape, 
0.2; Compactness, 0.5; T1 Red, 1; T1 Green, 1; T1 Blue, 1, T1 NIR, 2) and then evaluated by T1 NDVI 
(>0.1) and size (>100 m2).  Moderate to large objects with vegetative cover were reassigned to the Low 
Vegetation.  In a separate routine, larger objects (>500 m2) with higher NDVI (>0.2) and surrounded by 
Low Vegetation were also reassigned. 

5.5.1.8 Scrub\Shrub 

No attempt was made to adjust Scrub\Shrub features via automated feature extraction; gaps in LiDAR 
coverage across the study area made this step impractical.  However, this class received occasional 
manual corrections, when observed adjacent to other errors, during subsequent QA\QC. 

5.5.1.9 Emergent Wetlands (Virginia) 
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In the T1 map, Emergent Wetlands were not modified in the states where they were mapped previously 
(Delaware, Maryland, Pennsylvania, Washington, D.C.).  However, wetlands were added to 42 Virginia 
counties in the immediate tidal zone on or near Chesapeake Bay.  In a separate eCognition modeling 
exercise, Low Vegetation, Scrub\Shrub, and Barren features at T1 were segmented with a Multi-
resolution Segmentation and then evaluated according to the proportion of C-CAP wetland features 
occupying individual image objects.  Objects with a majority of their area (>0.5) occupied by C-CAP 
wetlands were initially identified but subsequently small (<200 m2) objects with high (>0.2) relative 
border to impervious features were reverted to their original classes.  This provisional classification was 
exported as a separate output layer and then imported into the full land-cover mapping workflow. 

During T1 map adjustment, the modeled wetlands derived from C-CAP were incorporated into the Low 
Vegetation, Scrub\Shrub and Barren classes and were then refined with adjacency and spectral criteria.  
Objects with high NIR (>115) at both T1 and T2 and were adjacent (>0.2) to impervious features 
reverted to their original classes.  The wetlands classification was further constrained by the tidal-zone 
layer produced by the Project Team, which limited Emergent Wetlands to immediate coastal waters and 
major river systems. 

5.5.1.10 Overhanging Tree Canopy Classes 

During the T1 adjustment of buildings and ground-level classes, the modified Tree Canopy class was 
preserved in its entirety on a separate map.  After the Impervious Structures, Other Impervious, and 
Impervious Roads classes were adjusted as necessary, Tree Canopy was restored to the full 
classification, and any features that overlapped with impervious surfaces were assigned to their 
respective overhanging canopy classes:  Tree Canopy Over Impervious Structures, Tree Canopy Over 
Other Impervious, and Tree Canopy Over Impervious Roads. 

5.5.1.11 Error Checking 

A series of error-checking routines evaluated the adjusted T1 map and performed additional 
modifications as necessary.  For example, the harmonization process for the Other Impervious and Low 
Vegetation classes, intended to minimize identification of false land-cover conversions during 
subsequent change detection, sometimes eliminated actual, unchanging T1 features.  This was 
especially true for small, thin impervious features such as long suburban or urban driveways, which 
may have different spectral characteristics in different datasets and also may be slightly offset.  To 
restore as many of these features as possible, the Low Vegetation class was segmented in a 2-step 
process that created objects with homogenous spectral characteristics:  1) Multi-resolution 
Segmentation on T1 NAIP (Scale, 25; Shape, 0.3; Compactness, 0.8; T1 Red, 1; T1 Green, 1; T1 Blue, 
1; and T1 NIR, 2); and 2) Multiple Object Difference Conditions-based Fusion (Common Border, 0.2; T1 
NDVI, 0.1).  The resulting objects were then examined by the relative difference (<-0.15) in T1 NDVI 
between them, which identified highly-contrasting features, as well as their configuration (Length/Width 
>3.5), width (<10m), and relative border to vegetated classes (>0.65).  Narrow with sharp spectral 
transitions were reverted to the Other Impervious class. 

5.5.2 Land Cover Change Detection 

After the T1 map was finalized, land-cover conversions that occurred during the analysis period were 
identified by examining the available T2 LiDAR and NAIP imagery (Figure 2).  The segmentation 
procedures were similar to those used during T1 adjustment but the evaluation routines were more 
complex, with individual losses and gains assigned to a wider variety of outcomes (Table 1).  Map 
harmonization was again a priority during change detection, with routines designed to prevent 
identification of false change. 

5.5.2.1 Tree Canopy 



34 
 

5.5.2.1.1 Losses 

Where T2 LiDAR was available, a Multi-threshold Segmentation based on the T2 nDSM (<1 m) first 
identified tree canopy that was removed between time periods.  When no T2 LiDAR existed, or in case 
there was a chronological gap between the T2 LiDAR and T2 NAIP, Tree Canopy was also segmented 
with spectral criteria:  1) Multi-resolution Segmentation on T2 NAIP (Scale, 25; Shape, 0.3; 
Compactness, 0.8; T2 Red, 1; T2 Green, 1; T2 Blue, 1; and T2 NIR, 2); and 2) Multiple Object 
Difference Conditions-based Fusion (Common Border, 0.2; T2 NDVI, 0.1).  After shadows were set 
aside, potential losses to impervious surfaces were highlighted by T2 NAIP (<0), they were further 
evaluated with Pixel-based Object Resizing combined with a series of shape (Length\Width), 
adjacency, and size criteria.  This step reverted objects likely caused by an offset between the T1 and 
T2 NAIP datasets, which was especially relevant along tree-canopy edges.  All losses, whether 
identified by LiDAR or spectral criteria, were then re-segmented by a Multi-resolution Segmentation 
with a smaller scale factor (15) to produce finer-scale objects.  For final assignments, Tree Canopy was 
converted to Low Vegetation (change combination 35) when T2 NDVI was high (>0) or when low NDVI 
objects were large, distant from buildings and roads, and surrounded by other vegetation.  These 
criteria for low NDVI objects helped prevent assignment of newly-plowed fields or forest-management 
operations to the Other Impervious class.  All remaining candidate tree-canopy losses with low NDVI 
(<0) were converted to Other Impervious (change combination 38).  Similar to the 
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Figure 2.  Land-cover change detection using a combination of NAIP, LiDAR, and thematic vector GIS 

layers, Chesapeake Bay Watershed.  NAIP (a) and LiDAR (b) at T1 show tree canopy in the center of 

the frame that is missing in T2 NAIP (c) and LiDAR (d).  After identifying candidate losses (e), the 

specific change types were assigned in the final map (f).  
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procedure in T1 Land Cover adjustments, shadows were then resolved with contextual criteria.  Note 
that, when the available T2 NAIP was acquired during leaf-off conditions, a lower T2 NDVI (-0.15) 
threshold was used to avoid capturing erroneous losses. 

Note that tree-canopy losses attributable to buildings and roads are discussed below, under Gains for 
Impervious Structures and Impervious Roads.  

5.5.2.1.2 Gains 

When T2 LiDAR existed, the addition of new, isolated trees (e.g., street trees) or small clumps of trees 
was provisionally identified using a Multi-threshold Segmentation on the T2 nDSM (>3 m) and then 
further examined by T2 DSM-DTM Difference (>0.5) and T2 NDVI (>0.2).  After very small (<15 m2) 
features were reverted, the remaining objects were smoothed (Pixel-based Object Resizing) and 
superimposed with the T1 Land Cover to identify specific change combinations (e.g., Low Vegetation to 
Tree Canopy, 53; Barren to Tree Canopy, 63; Other Impervious to Tree Canopy, 83).  To estimate the 
4-year growth of young trees, small (<50 m2) Tree Canopy objects were expanded by a 1-m buffer 
using Pixel-based Object Resizing and then the buffered gains were assigned to change classes as 
described above.  This buffering operation was also used to estimate tree growth for small trees when 
no T2 LiDAR existed. 

5.5.2.2 Impervious Structures 

5.5.2.2.1. Losses 

Where available, T2 LiDAR was used to capture potential building losses by identifying features with 
low (<0.1 m) nDSM values.  Losses with high (>0) T2 NDVI objects assumed to be vegetated features 
and thus were assigned to the Impervious Structures to Low Vegetation change class (75).  Low (<0) 
T2 NDVI values were assigned to Impervious Structures to Other Impervious (78). 

Without LiDAR, building losses could not be effectively mapped during automated feature extraction.  In 
such areas, the workflow relied on manual QA\QC to identify this type of change. 

5.5.2.2.1 Gains 

In areas with T2 LiDAR, all non-building and non-road classes were segmented by the T2 nDSM (> 3 
m) and evaluated by T2 DSM-DTM Difference (<1) and T2 NDVI (<0).  After eliminating small (<25 m2) 
candidate gains or small gains (<55 m2) next to buildings (which may be caused by offsets in the input 
layers), the new buildings were smoothed and then superimposed with the T1 land cover to identify 
change combinations (e.g., Tree Canopy to Impervious Structures, 37; Low Vegetation to Impervious 
Structures, 57).  In areas with and without T2 LiDAR, building footprint layers were also used to identify 
new structures, where available.  After all non-building classes in the T1 Land Cover that coincided with 
building footprints were identified, objects that were isolated from existing Impervious Structures were 
set aside as possible gains.  To avoid categorizing buildings that were omitted from the T1 Land Cover 
as gains, which could occur when such structures were heavily obscured by overhanging tree canopy, 
the candidate objects were also evaluated with spectral criteria, reverting features with very high T2 
NDVI (>0.25) to their previous classes.  Identified gains were then assigned to change classes using 
the same procedure as that used for LiDAR-derived buildings. 

5.5.2.3 Impervious Roads 

5.5.2.3.1 Losses 

All losses to the Impervious Roads class were based on the manually-edited layer containing new, 
modified, or removed roads developed at the beginning of the mapping workflow.  The Impervious 
Roads class was segmented by this layer and losses were provisionally identified from features labeled 
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as T2 removals.  After a 2-step segmentation process based on T2 NDVI (similar to previous 
operations with a Multi-resolution Segmentation followed by a Multiple Object Difference Conditions-
based Fusion to consolidate homogenous objects), vegetated features were separated from impervious 
surfaces using spectral criteria (T2 NDVI >0) and assigned to appropriate change classes. 

5.5.2.3.2 Gains 

Additions to the Impervious Roads class were similarly based on the manually-edited layer of road 
changes, although in this case spectral evaluation was unnecessary; new roads were superimposed 
with the T1 Land Cover to identify individual change types. 

5.5.2.4 Other Impervious 

Changes to the Other Impervious class are described under Low Vegetation and other classes. 

5.5.2.5 Low Vegetation 

5.5.2.4.1 Losses 

All remaining losses to Low Vegetation were evaluated using similar segmentation procedures (Multi-
resolution Segmentation and Multiple Object Difference Conditions-based Fusion) and spectral criteria 
(e.g., T2 NDVI).  As with Tree Canopy, shadows were first set aside to avoid overestimation of loss 
(i.e., shadows generally have low NDVI values) and Low Vegetation edges were examined for 
erroneous losses attributable to offsets between and the T1 and T2 imagery.  After identifying low (<0) 
T2 NDVI objects, resolving shadows into adjacent objects, and re-segmenting with a second Multi-
resolution Segmentation, candidate losses were further evaluated with contextual criteria (e.g., size and 
distance to developed features) to avoid reassigning features in actively-managed fields and forests 
where vegetated cover is only temporarily removed.  Losses were then assigned to specific change 
classes, most commonly Low Vegetation to Other Impervious (38). 

5.5.2.4.2 Gains 

Evaluation of Low Vegetation gains focused on the Other Impervious and Barren classes.  Each was 
segmented based on T2 NAIP and evaluated by spectral criteria, identifying features with high T2 NDVI 
(>0.1).  To further ensure these features had truly become re-vegetated, they were also examined 
relative to the absolute difference in NDVI between T1 and T2 (>0.2) and T1 NDVI (<0), which indicated 
a sharp contrast in NDVI across the analysis period.  The gains were then assigned to either Other 
Impervious to Low Vegetation (85) or Barren to Low Vegetation (65). 

5.5.2.7 Water 

Given the difficulty of evaluating the Water class across multiple time periods, when variable 
precipitation inland and tides along coastal zones can affect water levels, water-related conversions 
identified by automated feature extraction were limited to Tree Canopy gains (i.e., trees growing out 
over water).  However, other conversion types involving water were added during manual QA\QC.  

5.5.2.8 Scrub\Shrub 

Losses to the Scrub\Shrub class were modeled, as described above, for the developed-feature classes 
(e.g., Impervious Structures, Other Impervious, Impervious Roads).  With T2 LiDAR unavailable for 
many counties in the study area, gains were not modeled but were added occasionally during 
subsequent manual corrections. 

5.5.2.9 Emergent Wetlands 
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Similar to Scrub\Shrub features, losses to the Emergent Wetlands class were modeled for the 
developed-feature classes.  No gains were mapped. 

5.5.2.10 Overhanging Tree Canopy Classes 

Changes to the overhanging tree canopy classes were mapped with the same routines as used for 
Tree Canopy.  These included estimated growth of small trees out over underlying impervious surfaces 
(e.g., Other Impervious to Tree Canopy Over Other Impervious, or change class 211). 

5.5.2.11 Error Checking 

After all possible land-cover conversions were incorporated, a final round of error-checking routines 
improved not only selected change classes but also unchanged T1 classes.  First, any impervious 
features represented in available thematic vector datasets (e.g., parking lots and sidewalks) but not in 
the near-final map were burned into the classification as Other Impervious.  By design, only unchanged 
T1 features were affected by this step because the chronology of many thematic datasets could not be 
precisely determined.  Similarly, waterbodies in county-specific hydrology layers were incorporated into 
unchanged T1 classes (mostly Low Vegetation) as Water when the layers were deemed, during the 
initial vetting process, to provide more and better detail than the existing classification. 

Additional improvements to the Water class were also performed by segmenting the Low Vegetation 
class with the T2 NAIP (Multi-resolution Segmentation; Scale, 15; Shape, 0.3; Compactness, 0.8; T2 
Red, 1; T2 Green, 1; T2 Blue, 1; T2 NIR, 2) and examining T1 NIR and T2 NIR simultaneously.  When 
both were low (T1 NIR <20 and T2 NIR <60, or vice versa), Low Vegetation was reassigned to Water.  
This data-fusion step helped add stable, unchanging details that could not be reliable extracted from 
the T1 NAIP alone.  Similar NDVI-based procedures reassigned unchanged but erroneous Low 
Vegetation to Other Impervious (and vice versa) and reverted change class 85 (Other Impervious to 
Low Vegetation) to Low Vegetation in densely-developed areas where sparsely-vegetated lawns were 
incorrectly classified as Other Impervious at T1. 

5.5.3 Initial Post-processing 

All 2,000 x 2,000-pixel tiles processed in eCognition were exported as individual raster files and then 
mosaicked into county-specific layers, in GeoTiFF format, using FME.  These layers were then re-
projected from the original CRS into Albers Contiguous Equal Area projection (meters) using ArcGIS 
Pro.  Pyramids, statistics, and raster attribute tables were also added in ArcGIS Pro. 

The change classes in the land-cover map for each county encoded both T1 and T2 conditions, 
meaning that the map for either interval can be extracted as separate product, if necessary.  For use in 
subsequent land-use analyses, the Low Vegetation, Scrub\Shrub, and Barren classes at T2 were re-
segmented in eCognition to capture sub-class variability (e.g., fields captured by the Low Vegetation 
class may include a mix of plowed, bare soil, crops, hayfield, and pasture).  For all three classes, a 2-
step segmentation was used to highlight spectrally-diverse features:  1) Multi-resolution Segmentation 
(Scale, 25; Shape, 0.3; Compactness, 0.8; T2 Red, 1; T2 Green, 1; T2 Blue, 1; T2 NIR, 2); and 2) 
Multiple Object Difference Conditions-based Fusion (Common Border, 0.1; T2 NDVI, 0.05).  The 
objects were then exported as vector objects, in ESRI Geodatabase format, and re-projected to Albers 
using ArcGIS Pro. 

5.5.4 Quality Assurance\Quality Control (QA\QC) 

Two rounds of manual QA\QC were conducted to provide an additional increment of quality to the draft 
change-detection layers created via automated feature extraction.  Previous work by the Project Team 
has shown that manual editing does not necessarily change the output statistically but does help 
remove non-systematic errors and modeling glitches that might diminish end-user confidence in the 
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final product (O’Neil-Dunne et al. 2012).  To maximize the benefit of local knowledge, draft versions of 
the T2 extract were first submitted to each county for review (the change-detection layer was not 
submitted to outside reviewers because the multitude of change classes would be difficult to display 
and interpret efficiently).  Reviewers were instructed to focus specifically on omitted areas of change 
but other comments were also accepted.   Comments received from reviewers were compiled by the 
Project Team and evaluated for pertinence; suggestions implying a scale finer than the modeling 
resolution (1 m) were ignored.  In ArcGIS Pro, the Project Team then drew polygons representing 
necessary changes at either T1 or T2, specifically coding “To” and “From” change classes.  For each 
round, automated feature extraction was re-run for each county, incorporating the suggested edits and 
producing revised output.  The first round of editing (V1) focused on errors that were observable at a 
moderate zoom level, appropriate for changes at 10-m resolution.  The second round (V2) examined 
and addressed corrections at a finer scale, down to the 1-m modeling resolution. 

5.5.5 Final Post-processing 

Although all mapping was performed on a county-by-county basis, seamless mosaics at the state and 
watershed scales were also needed for use by stakeholders.  To eliminate small gaps that could occur 
between adjacent counties, usually no more than a pixel or two, a preliminary mosaic was created by 
combining all county layers using FME.  The preliminary mosaic was then smoothed in eCognition 
using filling routines (Pixel-based Object Resizing) that consolidated unclassified pixels in adjacent 
ones with the longest common border, and output tiles were again mosaicked in FME to produce final 
state-specific and watershed layers. 

5.5.6 Accuracy Assessment 

TBD – Summer 2022 

5.5.7 Final Output 

The final map provides a comprehensive representation of not only landscape change but also of land-
cover conditions at two different time periods.  Conditions at either T1 or T2 can be extracted from the 
map by reassigning the change classes to their original or subsequent states.  When evaluating 
change, either at individual locations or across the entire study area, it is important to remember that 
the T1 and T2 maps have been harmonized to avoid capturing cross-period discrepancies that are 
attributable to methodological differences or variable data inputs rather than bona fide land-cover 
conversions.  Accordingly, the new change product should not be compared to the original T1 map or 
any other previous products.  With constantly evolving mapping technologies and ever-present 
variability in remote-sensing data, future change-detection maps will require similar harmonization to 
ensure valid cross-period analysis. 
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Appendix A.  Specific analysis period and data inputs for 206 counties\municipalities in the Chesapeake 
Bay Watershed. 

  Analysis 
Period 

NAIP LiDAR 
 

County State T1 T2 T1 T2 T1 T2 Thematic Vector 

District of 
Columbia 

DC 2013 2017 2013 2017 2015 2015 building footprints, 
roads, impervious 
surfaces 

Kent DE 2013 2018 2013 2018 2013/ 
2014 

none building footprints 

New Castle DE 2013 2018 2013 2018 2013/ 
2014 

none building footprints 
(Microsoft Buildings 
2018) 

Sussex DE 2013 2018 2013 2018 2013/ 
2014 

none building footprints 
(Microsoft Buildings 
2018) 

Allegany MD 2013 2018 2013 2017 2012 none building footprints 

Anne Arundel MD 2013 2018 2013 2017/ 
2018 

2011 2017 building footprints, road 
polygons 

Baltimore MD 2013 2018 2013 2017/ 
2018 

2014 none building footprints, road 
polygons, parking lots, 
driveway lines, bridges 

Baltimore City MD 2013 2018 2013 2017/ 
2018 

2014 none building footprints, road 
polygons, other paved, 
railroads 

Calvert MD 2013 2018 2013 2018 2011 2017 building footprints, road 
polygons, other paved, 
bridges 

Caroline MD 2013 2018 2013 2018 2013 none nonea 

Carroll MD 2013 2018 2013 2017/ 
2018 

2014 none building footprints 

Cecil MD 2013 2018 2013 2018 2014 none building footprints 

Charles MD 2013 2018 2013 2017/ 
2018 

2014 none building footprints 

Dorchester MD 2013 2018 2013 2018 2013 none none 

Frederick MD 2013 2018 2013 2017/ 
2018 

2012 none building footprints, road 
polygons, other paved 
polygons, railroad 
polygons 

Garrett MD 2013 2018 2013 2017/ 
2018 

2014 none building footprints 

Harford MD 2013 2018 2013 2018 2013 none road polygons, parking 
lots 

Howard MD 2013 2018 2013 2017/ 
2018 

2011 none building footprints, road 
polygons, driveways, 
sidewalks, pools, 
tennis courts, 
basketball courts, sand 
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traps 

Kent MD 2013 2018 2013 2018 2014 none building footprints, 
driveway lines 

Montgomery MD 2013 2018 2013 2017/ 
2018 

2014 2018 building footprints, 
roads, railroads, 
cultural features (pads, 
pools), hydrology 

Prince George's MD 2013 2018 2013 2018 2014 2018 building footprints, 
bridges, impervious 
surfaces, hydrology 

Queen Anne's MD 2013 2018 2013 2018 2013 none building footprints 

Somerset MD 2013 2018 2013 2017/ 
2018 

None none building footprints 
(Microsoft Buildings 
2018) 

St. Mary's MD 2013 2018 2013 2017/ 
2018 

2014 2018 building footprints, 
transportation (roads), 
transportation 
(driveways, sidewalks, 
parking lots, air strips) 

Talbot MD 2013 2018 2013 2018 2014 none building footprints 

Washington MD 2013 2018 2013 2017/ 
2018 

2012 none building footprints, 
hydrology 

Wicomico MD 2013 2018 2013 2018 2011 none building footprints, road 
polygons, driveways, 
sidewalks, decks and 
patios, concrete pads 

Worcester MD 2013 2018 2013 2018 2011 none building footprints 

Allegany NY 2013 2017 2013 2017 None 2016/ 
2017 

building footprints 
(Microsoft Buildings 
2018) 

Broome NY 2013 2017 2013 2017 2015c none building footprints 
(Microsoft Buildings 
2018) 

Cayuaga NY 2013 2017 2013 2017 None 2018 building footprints 
(Microsoft Buildings 
2018) 

Chemung NY 2013 2017 2013 2017 None none building footprints 
(Microsoft Buildings 
2018) 

Chenango NY 2013 2017 2013 2017 2015 none building footprints 
(Microsoft Buildings 
2018) 

Cortland NY 2013 2017 2013 2017 None none building footprints 
(Microsoft Buildings 
2018) 

Delaware NY 2013 2017 2013 2017 None none building footprints 
(Microsoft Buildings 
2018) 

Herkimer NY 2013 2017 2013 2017 2015c none building footprints 
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(Microsoft Buildings 
2018) 

Livingston NY 2013 2017 2013 2017 2011 none building footprints 
(Microsoft Buildings 
2018) 

Madison NY 2013 2017 2013 2017 2015c none building footprints 
(Microsoft Buildings 
2018) 

Oneida NY 2013 2017 2013 2017 2015c none building footprints 
(Microsoft Buildings 
2018) 

Onondaga NY 2013 2017 2013 2017 None none building footprints 

Ontario NY 2013 2017 2013 2017 None none building footprints 

Otsego NY 2013 2017 2013 2017 2015 none building footprints 
(Microsoft Buildings 
2018) 

Schoharie NY 2013 2017 2013 2017 2014 none building footprints 
(Microsoft Buildings 
2018) 

Schuyler NY 2013 2017 2013 2017 2014c none building footprints 
(Microsoft Buildings 
2018) 

Steuben NY 2013 2017 2013 2017 none 2016c building footprints 

Tioga NY 2013 2017 2013 2017 none none building footprints 
(Microsoft Buildings 
2018) 

Tompkins NY 2013 2017 2013 2017 none none building footprints 

Yates NY 2013 2017 2013 2017 2014 none building footprints 
(Microsoft Buildings 
2018) 

Adams PA 2013 2017 2013 2017 none 2017 building footprints 

Bedford PA 2013 2017 2013 2017 none none nonea 

Berks PA 2013 2017 2013 2017 none none building footprints, 
hydrology (lakes, 
ponds, basins, rivers) 

Blair PA 2013 2017 2013 2017 none none building footprints 

Bradford PA 2013 2017 2013 2017 none none building footprints 

Cambria PA 2013 2017 2013 2017 none none building footprints 

Cameron PA 2013 2017 2013 2017 none none building footprints 
(Microsoft Buildings 
2018) 

Carbon PA 2013 2017 2013 2017 none none building footprints 
(Microsoft Buildings 
2018) 

Centre PA 2013 2017 2013 2017 none none building footprints, road 
polygons, parking lots, 
driveway lines 

Chester PA 2013 2017 2013 2017 2014 none building footprints 
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Clearfield PA 2013 2017 2013 2017 none none building footprints 

Clinton PA 2013 2017 2013 2017 none none building footprints 

Columbia PA 2013 2017 2013 2017 none 2017 building footprints 
(Microsoft Buildings 
2018) 

Cumberland PA 2013 2017 2013 2017 none 2017 none 

Dauphin PA 2013 2017 2013 2017 none 2016 building footprints, 
sidewalk lines 

Elk PA 2013 2017 2013 2017 none none building footprints 
(Microsoft Buildings 
2018) 

Franklin PA 2013 2017 2013 2017 none 2017 building footprints 

Fulton PA 2013 2017 2013 2017 none none building footprints 
(Microsoft Buildings 
2018) 

Huntingdon PA 2013 2017 2013 2017 none none building footprints 
(Microsoft Buildings 
2018) 

Indiana PA 2013 2017 2013 2017 none none building footprints 
(Microsoft Buildings 
2018) 

Jefferson PA 2013 2017 2013 2017 none none building footprints 
(Microsoft Buildings 
2018) 

Juniata PA 2013 2017 2013 2017 None 2017 building footprints 

Lackawanna PA 2013 2017 2013 2017 None none building footprints 
(Microsoft Buildings 
2018) 

Lancaster PA 2013 2017 2013 2017 2014 none building footprints 

Lebanon PA 2013 2017 2013 2017 None 2017 building footprints 

Luzerne PA 2013 2017 2013 2017 None none building footprints 
(Microsoft Buildings 
2018) 

Lycoming PA 2013 2017 2013 2017 None 2017 building footprints 
(Microsoft Buildings 
2018) 

McKean PA 2013 2017 2013 2017 None none building footprints 
(Microsoft Buildings 
2018) 

Mifflin PA 2013 2017 2013 2017 None none building footprints, 
sidewalks, driveways, 
roads, parking lots, 
miscellaneous 
impervious 

Montour PA 2013 2017 2013 2017 None 2017 building footprints 
(Microsoft Buildings 
2018) 

Northumberland PA 2013 2017 2013 2017 None 2017 building footprints 
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Perry PA 2013 2017 2013 2017 None 2017 building footprints 
(Microsoft Buildings 
2018) 

Potter PA 2013 2017 2013 2017 None none building footprints 
(Microsoft Buildings 
2018) 

Schuylkill PA 2013 2017 2013 2017 None none building footprints 

Snyder PA 2013 2017 2013 2017 None 2017 building footprints, 
airports, hydrology 
polygons 

Somerset PA 2013 2017 2013 2017 None none building footprints 
(Microsoft Buildings 
2018) 

Sullivan PA 2013 2017 2013 2017 None none building footprints 
(Microsoft Buildings 
2018) 

Susquehanna PA 2013 2017 2013 2017 None none building footprints 
(Microsoft Buildings 
2018) 

Tioga PA 2013 2017 2013 2017 None none building footprints 

Union PA 2013 2017 2013 2017 None 2017 building footprints, 
hydrology polygons 

Wayne PA 2013 2017 2013 2017 None none building footprints 

Wyoming PA 2013 2017 2013 2017 None none building footprints 

York PA 2013 2017 2013 2017 2014 none none 

Accomack VA 2014 2018 2014 2018 2015 none building footprints, road 
centerlines 

Albemarle VA 2014 2018 2014 2018 None 2016 building footprints, road 
centerlines, driveway 
polygons 

Alexandria VA 2014 2018 2014 2018 2014 none building footprints 
(Microsoft Buildings 
2018), road 
centerlines, driveway 
polygons, parking lots 

Alleghany VA 2014 2018 2014 2018b none 2017 building footprints 
(Microsoft Buildings 
2018), road 
centerlines, driveways, 
hydrology 

Amelia VA 2014 2018 2014 2018 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Amherst VA 2014 2018 2014 2018 none 2017 building footprints 
(Microsoft Buildings 
2018), road centerlines 

Appomattox VA 2014 2018 2014 2018 none 2016 building footprints 
(Microsoft Buildings 
2018), road centerlines 
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Arlington VA 2014 2018 2014 2018 2014 none building footprints, 
roads (polygons), 
impervious surface 
polygons (driveways, 
airports, parking lots, 
sidewalks) 

Augusta VA 2014 2018 2014 2018b 2011c none building footprints, road 
centerlines 

Bath VA 2014 2018 2014 2018b none 2017 building footprints 
(Microsoft Buildings 
2018), road centerlines 

Bedford City VA 2014 2018 2014 2018 none 2017 building footprints, road 
centerlines, driveway 
lines, sidewalk lines, 
hydrology (small 
ponds, lakes only) 

Bedford County VA 2014 2018 2014 2018 none 2017 building footprints, road 
centerlines, driveways, 
hydrology (small lakes 
and ponds) 

Botetourt VA 2014 2018 2014 2018b none 2017 building footprints, road 
centerlines 

Buckingham VA 2014 2018 2014 2018 none 2016 building footprints 
(Microsoft Buildings 
2018), road centerlines 

Buena Vista VA 2014 2018 2014 2018 none 2017 building footprints, road 
centerlines 

Campbell VA 2014 2018 2014 2018 none 2017 building footprints 
(Microsoft Buildings 
2018), road centerlines 

Caroline VA 2014 2018 2014 2018b 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Charles City VA 2014 2018 2014 2018 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Charlotte VA 2014 2018 2014 2018 none 2017 building footprints 
(Microsoft Buildings 
2018) 

Charlottesville VA 2014 2018 2014 2018 none 2016 building footprints, road 
centerlines 

Chesapeake VA 2014 2018 2014 2018 2013 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Chesterfield VA 2014 2018 2014 2018 2014 none building footprints, 
impervious surfaces 
(roads, other 
impervious surfaces) 

Clarke VA 2014 2018 2014 2018b 2011 none building footprints, road 
centerlines, sidewalk 
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lines 

Colonial 
Heights 

VA 2014 2018 2014 2018 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Covington VA 2014 2018 2014 2018b none 2017 building footprints 
(Microsoft Buildings 
2018), road 
centerlines, driveway 
lines, hydrology (small 
ponds and lakes only) 

Craig VA 2014 2018 2014 2018b none 2016/ 
2017 

building footprints, road 
centerlines 

Culpeper VA 2014 2018 2014 2018b 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Cumberland VA 2014 2018 2014 2018 none 2016 building footprints 
(Microsoft Buildings 
2018), road centerlines 

Dinwiddie VA 2014 2018 2014 2018 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Essex VA 2014 2018 2014 2018 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Fairfax City VA 2014 2018 2014 2018 2014 none building footprints, road 
centerlines 

Fairfax County VA 2014 2018 2014 2018b 2014c none building footprints, road 
centerlines, sidewalk 
lines 

Falls Church VA 2014 2018 2014 2018 2014 none building footprints, road 
centerlines 

Fauquier VA 2014 2018 2014 2018b 2012 none building footprints, road 
centerlines 

Fluvanna VA 2014 2018 2014 2018 2014c 2016c building footprints 
(Microsoft Buildings 
2018), road centerlines 

Frederick VA 2014 2018 2014 2018b 2012c none building footprints, road 
centerlines 

Fredericksburg VA 2014 2018 2014 2018b 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Giles VA 2014 2018 2014 2018b none 2016 building footprints, road 
centerlines 

Gloucester VA 2014 2018 2014 2018 2010 none building footprints, road 
centerlines 

Goochland VA 2014 2018 2014 2018 none 2016c building footprints 
(Microsoft Buildings 
2018), road centerlines 

Greene VA 2014 2018 2014 2018 2014/ none building footprints, road 
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2016 centerlines 

Hampton VA 2014 2018 2014 2018 2013 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Hanover VA 2014 2018 2014 2018 2014 none building footprints, road 
centerlines, hydrology 
(lakes, ponds, rivers) 

Harrisonburg VA 2014 2018 2014 2018 2011c none building footprints, road 
centerlines 

Henrico VA 2014 2018 2014 2018 2014 none building footprints, road 
centerlines 

Highland VA 2014 2018 2014 2018b none 2017 building footprints 
(Microsoft Buildings 
2018), road centerlines 

Hopewell VA 2014 2018 2014 2018 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Isle of Wight VA 2014 2018 2014 2018 none none building footprints 
(Microsoft Buildings 
2018), road centerlines 

James City VA 2014 2018 2014 2018 2010 none building footprints, road 
centerlines, water 
polygons 

King and 
Queen 

VA 2014 2018 2014 2018 2010 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

King George VA 2014 2018 2014 2018b 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

King William VA 2014 2018 2014 2018 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Lancaster VA 2014 2018 2014 2018 none none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Lexington VA 2014 2018 2014 2018 none 2017 building footprints, road 
centerlines 

Loudon VA 2014 2018 2014 2018b 2012 none building footprints, road 
centerlines 

Louisa VA 2014 2018 2014 2018 2012/ 
2014 

none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Lunenburg VA 2014 2018 2014 2018 none 2018 building footprints 
(Microsoft Buildings 
2018), road centerlines 

Lynchburg VA 2014 2018 2014 2018 none 2018 building footprints 
(Microsoft Buildings 
2018), roads, 
impervious surfaces 
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(driveways, parking 
lots), hydrology (lakes, 
rivers, streams) 

Madison VA 2014 2018 2014 2018b 2014 none building footprints, road 
centerlines 

Manassas VA 2014 2018 2014 2018b 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Manassas Park VA 2014 2018 2014 2018b 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Mathews VA 2014 2018 2014 2018 2010 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Middlesex VA 2014 2018 2014 2018 2010 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Montgomery VA 2014 2018 2014 2018 none 2018 building footprints, road 
centerlines, hydrology 

Nelson VA 2014 2018 2014 2018 none 2016 building footprints, road 
centerlines, driveway 
lines 

New Kent VA 2014 2018 2014 2018 2011 none building footprints, road 
centerlines, driveway 
lines 

Newport News VA 2014 2018 2014 2018 2013 none building footprints, road 
centerlines 

Norfolk VA 2014 2018 2014 2018 2013 none building footprints, road 
centerlines, water 
polygons 

Northampton VA 2014 2018 2014 2018 2015 none building footprints, road 
centerlines 

Northumberland VA 2014 2018 2014 2018 none none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Nottoway VA 2014 2018 2014 2018 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Orange VA 2014 2018 2014 2018 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Page VA 2014 2018 2014 2018b 2014 none building footprints, road 
centerlines 

Petersburg VA 2014 2018 2014 2018 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Poquoson VA 2014 2018 2014 2018 2013 none building footprints 
(Microsoft Buildings 
2018), road centerlines 
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Portsmouth VA 2014 2018 2014 2018 2013 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Powhatan VA 2014 2018 2014 2018 none 2016 building footprints, road 
centerlines 

Prince Edward VA 2014 2018 2014 2018 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Prince George VA 2014 2018 2014 2018 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Prince William VA 2014 2018 2014 2018b 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Rappahannock VA 2014 2018 2014 2018b 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Richmond City VA 2014 2018 2014 2018 2014 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Richmond 
County 

VA 2014 2018 2014 2018 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Roanoke City VA 2014 2018 2014 2018 none 2018 building footprints 

Roanoke 
County 

VA 2014 2018 2014 2018b none 2018 building footprints 

Rockbridge VA 2014 2018 2014 2018b none 2017 building footprints, road 
centerlines 

Rockingham VA 2014 2018 2014 2018b 2011c 2017c building footprints, road 
centerlines 

Salem VA 2014 2018 2014 2018 none 2018 building footprints 

Shenandoah VA 2014 2018 2014 2018b none 2017c building footprints, road 
centerlines 

Spotsylvania VA 2014 2018 2014 2018b 2014 none building footprints, road 
centerlines, other 
impervious (parking 
lots, driveways lines), 
water polygons 

Stafford VA 2014 2018 2014 2018b 2011 none building footprints, road 
centerlines, road 
centerlines 

Staunton VA 2014 2018 2014 2018 2011 none building footprints, road 
centerlines 

Suffolk VA 2014 2018 2014 2018 none none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Surry VA 2014 2018 2014 2018 none none building footprints 
(Microsoft Buildings 
2018), road centerlines 
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Virginia Beach VA 2014 2018 2014 2018 2012 2018 building footprints, 
roads, parking lots, 
driveways, sidewalks, 
bike paths 

Warren VA 2014 2018 2014 2018b 2011/ 
2014 

none building footprints 

Waynesboro VA 2014 2018 2014 2018 2011 none building footprints, road 
centerlines 

Westmoreland VA 2014 2018 2014 2018b 2011 none building footprints 
(Microsoft Buildings 
2018), road centerlines 

Williamsburg VA 2014 2018 2014 2018 2010 none building footprints, road 
centerlines 

Winchester VA 2014 2018 2014 2018b 2012 none building footprints, road 
centerlines 

York VA 2014 2018 2014 2018 2013 none building footprints, road 
centerlines 

Berkeley WV 2014 2018 2014b 2018b 2012 none building footprints 
(Microsoft Buildings 
2018) 

Grant WV 2014 2018 2014 2018b none 2016c building footprints 
(Microsoft Buildings 
2018) 

Greenbrier WV 2014 2018 2014b 2018b none 2016 building footprints 
(Microsoft Buildings 
2018) 

Hampshire WV 2014 2018 2014b 2018b none 2016 building footprints 
(Microsoft Buildings 
2018) 

Hardy WV 2014 2018 2014b 2018b none 2016 building footprints 
(Microsoft Buildings 
2018) 

Jefferson WV 2014 2018 2014b 2018b 2012 none building footprints 

Mineral WV 2014 2018 2014b 2018b none 2016c building footprints 
(Microsoft Buildings 
2018) 

Monroe WV 2014 2018 2014b 2018b none 2016 building footprints 
(Microsoft Buildings 
2018) 

Morgan WV 2014 2018 2014b 2018b 2012 none building footprints 
(Microsoft Buildings 
2018) 

Pendleton WV 2014 2018 2014b 2018b none 2016 building footprints 
(Microsoft Buildings 
2018) 

Pocahontas WV 2014 2018 2014b 2018b none 2016c building footprints 
(Microsoft Buildings 
2018) 

Preston WV 2014 2018 2014b 2018b none none building footprints 
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(Microsoft Buildings 
2018) 

Randolph WV 2014 2018 2014b 2018b none none building footprints 
(Microsoft Buildings 
2018) 

Tucker WV 2014 2018 2014b 2018b none none building footprints 
(Microsoft Buildings 
2018) 

 

aWhere no plainimetrics were used, the structures were based on the original 2013\2014 land cover, 
LiDAR (if available) and manual QA\QC. 

bLeaf-off NAIP imagery, all or in part. 

cPartial coverage. 
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Appendix B.  Interpreting LULC Change Matrices 
 
Data on LULC change represent transitions of LULC between two time periods: an early date (e.g., 
Time 1, 2013 or 2014) and a late date (e.g., Time 2, 2017 or 2018). A concise way of illustrating such 
changes is to construct a cross-tabulation, aka “pivot table”, between the two datasets.  The result is a 
LULC change matrix that shows all observed changes in LULC in a single table with the early date 
values (acres of land use X) represented in rows and the late date values represented in columns.  
Values along the diagonal are absent because they would represent no change and are not included in 
the LULC change raster data.  LULC change matrices have been produced for each of the 206 
counties and incorporated cities (those with unique 5-digit FIPS codes) within and adjacent to the 
Chesapeake Bay watershed and separately for the portions of each county in the watershed. An 
aggregated pivot table for the 206-county region and one for just the Bay watershed have also been 
produced.  For these different geographies, LULC change matrices have been produced for the 18-
class general classification and the 54-class detailed classification6.  A crosswalk relating these two 
classifications is provided below (Figure 1) and can be referenced to understand the composition of the 
general classes.  Note that the LULC change matrices for the detailed classification include greater 
amounts of overall change than the matrices for the general classification.  This is because detailed 
class changes that occur within the same general class are not recognized as change at the general 
aggregation level.  For example, changes from herbaceous to barren cover within the general cropland 
class do not represent a change to or from cropland at the general level.  LULC change matrices are 
available for download via the dynamic LULC change website, http://lulc-1718.cicapps.org/.  
 
The general LULC change matrix for Charles County, Maryland is shown below (Table 1). The values 
in the table are in units of acres and restricted to areas of change.  LULC codes are defined below the 
table.  The “Decrease” column represents the total acreages of 2013 LULCs (row labels) that 
transitioned to a different 2018 LULC (column labels).  The “Increase” row represents the total 
acreages of 2017 LULCs that transitioned from a different 2013 LULC. The “Net” row represents overall 
net change in a particular LULC from 2013 to 2018.  To facilitate interpretation, changes among the 
seven developed LULC classes are colored beige, changes among the four forest-related LULC 
classes are colored green, changes among agricultural and extractive LULC classes are colored 
orange, and changes among the wetlands and water classes are colored shades of blue.  From 2013 to 
2018, 6,892 acres of land in Charles County changed from one to another of the 18 general LULC 
classes.  
 
Forest Change 
The largest LULC increase in Charles County was from natural succession to forest (1,329 acres) while 
the largest decrease was from forest to natural succession (879 acres).  Note that this decrease should 
not be considered a permanent loss of forest. These types of changes are often indicative of timber 
harvest activities and mostly represent resulting in a temporary loss of tree canopy. Forests 
transitioning to the five non-tree developed classes (ROAD, e.g., Roads (ROAD), Impervious Structures 
(IMPS), Impervious Other (IMPO), Turf Grass (TURF), and Pervious Developed, Other (PDEV)) 
represent a change in use coupled with a change in cover.  Forests transitioning to the two developed 
classes with trees, Tree Canopy over Impervious Surfaces (TCIS) and Tree Canopy over Turf Grass 
(TCTG), represent only a change in use meaning no trees were cut down. These formerly forest trees 
are now adjacent to buildings or other impervious surfaces and are assumed to no longer function as 
forest trees because their understory was likely compacted or otherwise altered as part of the 

 
6 Change matrices for the 13 mapped land uses informing the Phase 6 Watershed Model and CAST are available 
upon request. 

http://lulc-1718.cicapps.org/
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development process.  Forests (FORE) transitioning to Tree Canopy, Other (TCOT) are an indicator of 
fragmentation due to a reduction in forest patch size or division of forest patches.        
 
Tree Canopy Change in Developed Areas 
Increases in tree canopy in developed areas are most apparent in the transition from Turf Grass (TURF 
to either) to Tree Canopy over Turf Grass (TCTG), Forest (FORE), or Tree Canopy, Other (TCOT).  
Decreases in tree canopy in developed areas are evident in the transition from Tree Canopy over 
Impervious Surfaces (TCIS) and/or TCTG to one of the five non-tree developed classes. 
 
Agricultural Change 
These data show both increases and decreases in cropland and pasture. The decreases are 
associated with development or afforestation, both of which represent obvious and actual declines.  in 
cropland and/or pasture. The increases, however, are suspect as they are either are associated with 
lands becoming undeveloped or the clearing of forests and other tree canopy. With just two dates of 
imagery covering a 4–5-year timespan, it is not always possible to know the ultimate use of forest lands 
that was recently cleared. were cleared during this period. Context and ancillary data are therefore 
used to infer potential use of the land. Cleared forests adjacent to agricultural fields or in parcels 
dominated by agriculture are assumed to cropland or pasture.  This may or not be the case and cannot 
be verified until the 2021/22 mapping is complete. 
 
Extractive Change 
The development or expansion of quarries, sand and gravel mines, and other surficial mining 
operations are evident as gains particularly from forests (FORE) and pervious developed, other 
(PDEV).   
 
Wetland Change 
Changes between forests and wetlands are misleading because all types of forested and other tree 
canopy wetlands were included in the Forest (FORE) and Tree Canopy, Other (TCOT) general classes. 
Therefore, changes from FORE to Wetlands, Riverine (RIVW) and RIVW to FOREvice versa represent 
tree removal or tree growth in a wetland, not a decrease or increase in wetlands.  This interpretation 
applies to the following change categories: 
Forest (FORE) to/from Wetlands, Tidal (TDLW) 
Forest (FORE) to/from Wetlands, Riverine (RIVW) 
Forest (FORE) to/from Wetlands, Terrene (TERW) 
Tree Canopy, Other (TCOT) to/from Tidal Wetlands 
Tree Canopy, Other (TCOT) to/from Wetlands, Tidal (TDLW) 
Tree Canopy, Other (TCOT) to/from Wetlands, Riverine (RIVW) 
Tree Canopy, Other (TCOT) to/from Wetlands, Terrene (TERW) 
 
Besides tree removal and tree growth, the only substantial change in wetlands evident in these data are 
changes from wetlands to water which either represent actual changes associated with sea level rise 
and/or marsh subsidence or could represent ephemeral change due to differences in tidal stages when 
the 2013 and 2018 imagery were acquired.  All other wetland changes are minor because wetlands 
were defined and mapped using static ancillary data (e.g., National Wetlands Inventory) and changes in 
hydrology and hydrophytic vegetation are not readily detectable in aerial imagery.   
 
Artifactual Change  
While great effort was invested to minimize potential errors when translating land cover change to land 
use change, a few transitions in the change matrices are likely artifacts associated with the mapping 
protocols rather than actual change on the ground. Artifactual changes include: 
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Tree canopy over Turf Grass (TCTG) to Tree Canopy, Other (TCOT)  
Pervious Developed, Other (PDEV) to/from Natural Succession (NATS) 
Natural Succession (NATS) to Pervious Developed, Other 
Natural Succession (NATS) to Harvested Forest (HARF) 
Cropland (CROP) to/from Pasture (PAST)  
Pasture (PAST) to Cropland (CROP) 
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Figure 1.  Crosswalk between the 18 general and 54 detailed LULC class. 
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Table 1.  LULC Change Matrix, 2013 to 2018 for Charles County, Maryland. 

 

 

 

ROAD IMPS IMPO TCIS TURF TCTG PDEV FORE TCOT HARF NATS CROP PAST EXTR TDLW RIVW TERW WATR Decrease

ROAD -             0.0             0.2             0.6             0.2             0.5             0.1             1.4             0.4             -             -             0.1             0.2             -             -             -             -             -             3.8             

IMPS -             -             4.2             0.2             2.2             0.8             0.1             0.4             0.0             -             0.4             0.2             0.5             -             -             -             -             0.1             9.0             

IMPO 8.6             18.9          -             2.7             9.8             2.8             3.8             2.0             0.5             -             1.8             1.0             1.1             -             -             0.2             0.0             1.1             54.3          

TCIS 0.0             3.6             14.0          -             38.1          -             14.4          -             -             0.0             2.4             0.8             1.4             0.0             0.0             0.2             0.0             -             74.9          

TURF -             19.7          96.1          -             -             56.6          53.8          5.8             3.1             0.0             8.1             1.1             0.7             8.9             -             -             -             -             254.0       

TCTG 0.1             38.0          39.4          0.3             192.0       -             10.7          -             69.3          0.0             6.0             2.1             4.9             0.1             -             -             -             0.1             363.1       

PDEV 62.9          133.4       113.6       -             438.7       3.2             -             16.1          4.1             -             22.6          5.2             0.3             26.2          -             -             -             3.8             830.0       

FORE 32.2          52.0          127.9       7.0             213.1       635.4       409.8       -             218.3       23.2          879.2       52.5          60.7          158.9       9.5             45.5          2.8             7.5             2,935.3  

TCOT 1.5             11.5          20.1          -             37.5          26.6          18.6          -             -             0.0             28.9          13.0          18.8          2.1             2.1             1.9             0.6             0.1             183.1       

HARF -             -             -             -             -             -             -             -             -             -             -             -             -             -             -             -             -             -             -             

NATS 0.3             0.8             2.0             -             188.2       25.6          42.9          1,328.8  116.0       1.7             -             8.3             17.4          14.7          -             -             -             35.6          1,782.3  

CROP -             5.1             15.0          -             6.4             0.6             11.8          56.4          10.3          -             12.4          -             1.7             -             -             0.1             0.7             9.0             129.5       

PAST 0.7             5.6             16.6          -             20.2          1.5             8.0             20.0          21.1          -             6.0             1.2             -             0.1             -             -             1.2             2.5             104.8       

EXTR -             -             -             -             -             -             -             -             -             -             -             -             -             -             -             -             -             -             -             

TDLW -             0.0             0.4             -             -             -             -             22.1          3.7             -             -             -             -             -             -             -             -             19.6          45.8          

RIVW -             0.0             0.4             -             2.1             -             -             54.3          6.9             -             -             -             -             0.3             -             -             -             1.4             65.4          

TERW -             0.1             0.7             -             1.6             0.1             1.8             35.6          4.8             -             -             0.9             -             0.1             -             -             -             1.8             47.5          

WATR -             0.0             -             -             0.0             0.0             -             1.0             0.8             -             2.1             0.3             0.1             4.0             -             0.2             0.0             -             8.6             

Increase 106.3       288.8       450.8       10.7          1,150.1  753.6       575.7       1,543.9  459.3       24.9          969.7       86.7          107.8       215.4       11.6          48.1          5.4             82.5          6,891.5  

TotIncr 106.3       288.8       450.8       10.7          1,150.1  753.6       575.7       1,543.9  459.3       24.9          969.7       86.7          107.8       215.4       11.6          48.1          5.4             82.5          

TotDecr 3.8             9.0             54.3          74.9          254.0       363.1       830.0       2,935.3  183.1       -             1,782.3  129.5       104.8       -             45.8          65.4          47.5          8.6             

Net 102.6       279.9       396.5       (64.2)        896.1       390.5       (254.3)     (1,391.4) 276.1       24.9          (812.6)     (42.8)        3.0             215.4       (34.2)        (17.3)        (42.1)        74.0          

2018 LULC

2013 

LULC

ROAD = Impervious, Roads 

IMPS = Impervious, Structures 

IMPO = Impervious, Other 

TCIS = Tree Canopy over Impervious Surfaces 

TURF = Turf Grass 

TCTG = Tree Canopy over Turf Grass 

PDEV = Pervious Developed, Other  

FORE = Forest and Forested Wetlands 

TCOT = Tree Canopy, Other 

NATS = Natural Succession 

HARF = Harvested Forest 

RIVW = Wetlands, Riverine (non-forested) 

TERW = Wetlands, Terrene (non-forested) 

TDLW = Wetlands, Tidal (non-forested) 

CROP = Cropland 

PAST = Pasture and Hay 

EXTR = Extractive (active mining) 

WATR = Water (estuarine, lentic, lotic) 

* Transitions in red text represent values that should 

be interpreted with caution for all counties. Please 

read the interpretation above for an explanation. 
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Appendix C  
 
 
2013/14 and 2017/18 Land Cover Classification 
 
1 Water: All areas of open water. This includes ponds, rivers, lakes and boats not attached to docks. It 
also includes small, anthropogenic features such as farm ponds and storm-water retention structures. 
MMU7 = 25 square meters 
 
2 Emergent Wetlands: Low vegetation areas located along marine or estuarine regions that are 
visually confirmed to have the look of saturated ground surrounding the vegetation and that are located 
along major waterways (i.e. rivers, ocean).  For Virginia tidal zones, this class includes low vegetation, 
woody vegetation, and barren features that overlap substantially with wetland features delineated by 
the NOAA C-CAP program and within 1-ft of tidal waters. MMU = 225 square meters 
 
3 Tree Canopy: Deciduous and evergreen woody vegetation of either natural succession or human 
planting that is over approximately >3 meters in height. Stand-alone individuals, discrete clumps, and 
interlocking individuals are included. MMU = 9 square meters 
 
4 Scrub/Shrub: Heterogeneous area of both/either deciduous and/or evergreen woody vegetation. 
Characterized by variation in height of vegetation through patchy coverage of shrubs and young trees 
interspersed with grasses and other lower vegetation. Discrete clumps and small patches of 
interlocking individuals are included, as are true shrubs, young trees, and trees or shrubs that are small 
or stunted because of environmental conditions, when intermingled in a heterogeneous landscape with 
low vegetation. MMU = 225 square meters 
 
5 Low Vegetation: Plant material less than approximately 3 meters in height. Includes lawns, tilled 
fields, nursery plantings with or without tarp cover, recently cut forest management areas, and natural 
ground cover. MMU = 9 square meters 
 
6 Barren: Areas void of vegetation consisting of natural earthen material regardless of how it has been 
cleared. This includes beaches, mud flats, and bare ground in construction sites. MMU = 25 square 
meters  
 
7 Impervious Structures: Human-constructed objects made of impervious materials that are greater 
than approximately 2 meters in height. Houses, malls, and electrical towers are examples of structures. 
MMU = 9 square meters  
 
8 Other Impervious: Human-constructed surfaces through which water cannot penetrate, and that are 
below approximately 2 meters in height. MMU = 9 square meters  
 
9 Impervious Roads: Impervious surfaces that are used and maintained for transportation. MMU = 9 
square meters 
 
10 Tree Canopy over Impervious Structures: Forest or Tree Cover that overlaps with impervious 
surfaces rendering the structures partially or completely not visible to plain sight. Note: impervious 

 
7 Minimum Mapping Unit (MMU) in this instance is the minimum size, dimensions, or threshold for features to be 
mapped or classified within a specific 2013/14 and 2017/18 land cover class.   
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surfaces and tree canopy were mapped independently, overhanging tree canopy was identified by 
superimposing these classes to isolate areas of overlap. MMU = 9 square meters  
 
11 Tree Canopy over Other Impervious: Forest or Tree Cover that overlaps with impervious surfaces 
rendering the impervious surface partially or completely not visible to plain sight.  Note: impervious 
surfaces and tree canopy were mapped independently, overhanging tree canopy was identified by 
superimposing these classes to isolate areas of overlap. MMU = 9 square meters  
 
12 Tree Canopy over Impervious Roads: Forest or Tree Cover that overlaps with impervious 
surfaces rendering the roads partially or completely not visible to plain sight. Note: impervious surfaces 
and tree canopy were mapped independently, overhanging tree canopy was identified by 
superimposing these classes to isolate areas of overlap. MMU = 9 square meters  
 
254 Aberdeen Proving Ground: No source imagery or ancillary data were available for this area. This 
class only exists in Harford, County Maryland.  
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2013/14 and 2017/18 General LULC Raster Classification  
 
11-15 Water (WATR) = the Chesapeake Bay, lakes and reservoirs, riverine and terrene ponds, large 
rivers, and water within smaller channels visible through the tree canopy. Included with this class are 

NWI or state wetlands that are mapped as water in the land cover (MMU = 25m2) 
 
21 Impervious Roads (ROAD) = Paved, and some unpaved, roads and bridges. Dirt and gravel roads 
may be mistakenly mapped as impervious depending on the spectral characteristics of the substrate 
(Minimum Mapping Unit (MMU) = 9 square meters). 
 
22 Impervious, Structures (IMPS) = Human-constructed objects made of impervious materials that 
are greater than approximately 2 meters in height. Houses, malls, and electrical towers are examples of 
structures (MMU = 9 square meters). 
 
23 Impervious, Other (IMPO) = Human-constructed surfaces through which water cannot penetrate, 
and that are below approximately 2 meters in height, e.g., sidewalks, parking lots, runways, field-
mounted solar panels, rail lines, and some private roads.  Barren, low vegetation, scrub-shrub, and 
emergent wetland cover types within 3 meters of rail lines were reclassed to impervious surfaces and 
included in this class (MMU = 9 square meters). 
 
24-26 Tree Canopy over Impervious Surfaces (TCIS) = Tree cover that overlaps with roads, 
structures, or other impervious surfaces rendering them partially or completely invisible from above 
(MMU = 9 square meters). 
 
27 Tree Canopy over Turf Grass (TCTG) = Tree cover within 30-ft of structures or adjacent turf grass 
and other impervious in rural wooded areas and within 60-ft of structures or adjacent turf grass and 
other impervious in developed areas. Developed areas include U.S. Census Bureau defined urban 
areas and clusters. Rural areas include all lands outside Census urban areas and clusters. The 
understory in all TCTG areas is assumed to be turf grass or otherwise altered through compaction, 
removal of surface organic material, and/or fertilization. 
 
28 Turf Grass (TURF) = Low vegetation associated with residential, commercial, industrial, and 
recreational areas that is assumed to be altered through compaction, removal of organic material, and/or 

fertilization. These include low vegetation lands within small, developed parcels (≤ 5 acres with ≥ 55 m
2 

of impervious cover), recreational fields, and other turf-dominated land uses (e.g., cemeteries, shopping 
centers, golf courses, airports, hospitals, amusement parks, etc.). 
 
29; 35; 51-53 Pervious Developed, Other (PDEV) = Barren lands in developed parcels and barren or 
low vegetation lands that may represent the early stages of development, utility rights-of-way, portions 
of road rights-of-way, landfills, and the pervious portions of solar fields adjacent to panel arrays. 
 
32 Harvested Forest (HARF) = Barren and low vegetation resulting from recently cleared forests and 
other tree canopy in association with a timber harvest permit (DE, MD, PA, VA, WV) or having a land 
use history of forest rotation since the mid 1980’s. Timber harvest permit data were not reported to the 
Chesapeake Bay Program by either New York or the District of Columbia. 
 
37-38 Extractive (EXTR) = Barren lands and impervious surfaces within quarries, surface mines, and 
other surficial excavation sites. 
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41; 65; 75; 95 Forest (FORE) = All contiguous patches of trees ≥1 acre in extent with a patch width 
≥240-ft somewhere in the patch. The 240-ft girth references potential altered microclimate conditions 
extending inwards up to 120-ft from the patch edge. The forest understory is assumed to be 
undisturbed/unmanaged. Forests that are also wetlands are included in this class. 
 
42; 64; 74; 94 Tree Canopy, Other (TCOT) = All trees that do not qualify as “Forest” but are presumed 
to have an undisturbed/unmanaged understory. Such areas include narrow windbreaks adjacent to 
cropland and roads and tree canopy patches not qualified as “forest” that are fully surrounded by 
agriculture.  Wetlands with “other tree canopy” are included in this class.  
 
16; 54-56 Natural Succession (NATS) = Barren, herbaceous, or scrub-shrub lands that are not 
classed as cropland, pasture, turf grass, or pervious developed. These are areas that are presumed to 
be undergoing either natural or managed succession and will eventually become forested although this 
process may take years to decades to complete. Abandoned mine lands are included in this class. 
 
61-63 Riverine Wetlands, Non-forested (RIVW) = National Wetlands Inventory (NWI) non-pond, non-
lake wetlands, emergent wetlands along streams mapped from high-resolution imagery outside 
Virginia, state designated wetlands, and potential non-tidal wetlands (for Pennsylvania only) located 
within the FEMA designated 100-year floodplain, DEM-aligned 1:24,000 scale buffered stream network, 
SSURGO hydric or frequently flooded soils. 
 
71-73 Terrene Wetlands, Non-forested (TERW) = National Wetlands Inventory (NWI) non-pond, non-
lake wetlands, emergent wetlands mapped from high-resolution imagery outside Virginia, state 
designated wetlands, and state potential non-tidal, non-floodplain wetlands (for Pennsylvania only). 
These are spatially isolated wetlands on ridges and slopes that are most prevalent in the coastal plain 
where streams may originate from wetland complexes. 
 
81-82; 87-88 Cropland (CROP) = Barren and low vegetation lands on large parcels (> 5 acres) that are 
mapped as cropland in the 2018 Cropland Data Layer 
 
83-85 Pasture/Hay (PAST) = Barren, low vegetation, and scrub shrub lands on large parcels (> 5 acres) 
that are mapped as pasture in the 2019 National Land Cover Dataset or the 2018 Cropland Data Layer 
 
91-93 Tidal Wetlands, Non-forested (TDLW) = All wetlands mapped as estuarine or marine according 
to National Wetlands Inventory (NWI) plus any adjacent freshwater emergent wetlands, and emergent 
wetlands mapped from high-resolution imagery outside Virginia must be within 1-ft of adjacent tidal 
water elevations derived from NOAA’s Sea Level Rise dataset. 
(https://www.fws.gov/wetlands/Documents/Wetlands-and-Deepwater-Habitats-Classification-chart.pdf) 
 
 
 

http://www.fws.gov/wetlands/Documents/Wetlands-and-Deepwater-Habitats-Classification-chart.pdf)

